Forgot password?
 Register account
View 242|Reply 0

[几何] 双曲度量下 圆的弧长

[Copy link]

3158

Threads

7924

Posts

610K

Credits

Credits
64218
QQ

Show all posts

hbghlyj Posted 2022-12-13 20:26 |Read mode
半平面 $\{(x,y)\in\Bbb R^2:x > 0\}$ 上的双曲度量 $ds^2=\frac{dx^2+dy^2}{x^2}$,求圆 $x^2+ y^2=1$ 从 $(\cos\alpha,\sin\alpha)$ 到 $(\cos\beta, \sin\beta)$ 的弧长.
Solution
圆 $x^2 + y^2 = 1$ 可以由 $(\cos \theta, \sin \theta)$ 参数化。代入 $x(\theta) = \cos \theta$ 与 $y(\theta) = \sin \theta$ 得
$$ds^2 = \frac{dx^2+dy^2}{x^2} = \frac{(\sin^2\theta+\cos^2\theta) \, d\theta^2}{\cos^2\theta} = \sec^2\theta  d\theta^2.$$
于是弧长由下式给出:
$$s = \int \sqrt{ds^2} = \int_{\alpha}^{\beta} |\sec \theta| \, d\theta $$

Mobile version|Discuz Math Forum

2025-6-6 10:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit