Forgot password?
 Register account
View 1782|Reply 2

[不等式] 尼斯贝特不等式的加强

[Copy link]

72

Threads

96

Posts

1172

Credits

Credits
1172

Show all posts

v6mm131 Posted 2017-8-11 13:46 |Read mode
Last edited by v6mm131 2017-8-11 17:13不全为0的非负实数$a,b,c$,证明:\[\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge \frac{3}{2}+\frac{9}{16}\cdot\frac{(b-c)^2}{a^2+b^2+c^2}\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-8-11 13:52
“尼斯贝特不等式”——第一次看到 Nesbitt 的中文译音,真怪

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2017-8-11 14:01
曾经还见过一个类似的:
\[\frac a{b+c}+\frac b{c+a}+\frac c{a+b}\geqslant\frac32+\frac7{16}\cdot\frac{(b-c)^2}{ab+bc+ca},\]
那系数是最佳的,1楼也是。

Mobile version|Discuz Math Forum

2025-5-31 10:50 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit