Forgot password
 Register account
View 1694|Reply 2

一个没见过的 Cauchy 恒等式

[Copy link]

1

Threads

0

Posts

0

Reputation

Show all posts

poorich posted 2017-9-8 02:30 |Read mode
在徐利治《数学分析的方法及例题选讲 (修订版)》上第二章做到的,它放在 Jacobi 恒等式(124题)
\[\prod_{n=1}^{\infty}(1+q^{2n-1}z)(1+q^{2n-1}z^{-1})(1-q^{2n})=\sum_{n=-\infty}^{\infty}q^{n^2}z^n \quad (\abs{q}<1)\]
的后面,书上的 Cauchy 恒等式(131题)应该是写错了:
\[\prod_{n=1}^m (1+x^{2n-1}z)=1
+\sum_{n=1}^m\frac{(1-x^{2m})(1-x^{2m-2})\dotsm(1-x^{2m-2n+2})}{(1-x^{2})(1-x^{4})\dotsm(1-x^{2n})}.
\]
感觉少了和 $z$ 相关的什么。查了一下老的版本,是写作
\[
\prod_{n=1}^m (1+x^{2n-1}z)=1
+\sum_{n=1}^m\frac{(1-x^{2m})(1-x^{2m-2})\dotsm(1-x^{2m-2n+2})}{(1-x^{2})(1-x^{4})\dotsm(1-x^{2n})}x^{n^2}z^n.
\]
问问大家怎么证明?

50

Threads

402

Posts

5

Reputation

Show all posts

zhcosin posted 2017-9-8 10:25
修订版嘛,也没规定说只能把错的改对,不能把对的改错呀

461

Threads

958

Posts

4

Reputation

Show all posts

青青子衿 posted 2021-5-10 11:21
Excursions in Classical Analysis: Pathways to Advanced Problem Solving and Undergraduate Research
Hongwei Chen
Mathematical Association of America, 2010年
426725725.png

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 13:53 GMT+8

Powered by Discuz!

Processed in 0.032771 seconds, 34 queries