Forgot password?
 Create new account
View 1498|Reply 2

一个没见过的 Cauchy 恒等式

[Copy link]

1

Threads

0

Posts

14

Credits

Credits
14

Show all posts

poorich Posted at 2017-9-8 02:30:10 |Read mode
在徐利治《数学分析的方法及例题选讲 (修订版)》上第二章做到的,它放在 Jacobi 恒等式(124题)
\[\prod_{n=1}^{\infty}(1+q^{2n-1}z)(1+q^{2n-1}z^{-1})(1-q^{2n})=\sum_{n=-\infty}^{\infty}q^{n^2}z^n \quad (\abs{q}<1)\]
的后面,书上的 Cauchy 恒等式(131题)应该是写错了:
\[\prod_{n=1}^m (1+x^{2n-1}z)=1
+\sum_{n=1}^m\frac{(1-x^{2m})(1-x^{2m-2})\dotsm(1-x^{2m-2n+2})}{(1-x^{2})(1-x^{4})\dotsm(1-x^{2n})}.
\]
感觉少了和 $z$ 相关的什么。查了一下老的版本,是写作
\[
\prod_{n=1}^m (1+x^{2n-1}z)=1
+\sum_{n=1}^m\frac{(1-x^{2m})(1-x^{2m-2})\dotsm(1-x^{2m-2n+2})}{(1-x^{2})(1-x^{4})\dotsm(1-x^{2n})}x^{n^2}z^n.
\]
问问大家怎么证明?

51

Threads

404

Posts

2896

Credits

Credits
2896
QQ

Show all posts

zhcosin Posted at 2017-9-8 10:25:24
修订版嘛,也没规定说只能把错的改对,不能把对的改错呀

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2021-5-10 11:21:52
Excursions in Classical Analysis: Pathways to Advanced Problem Solving and Undergraduate Research
Hongwei Chen
Mathematical Association of America, 2010年
426725725.png

手机版Mobile version|Leisure Math Forum

2025-4-21 14:31 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list