Forgot password?
 Create new account
View 213|Reply 5

[数列] $∏(1-2^{-n})$

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2023-6-11 00:53:52 |Read mode
对任意正整数$n$求证$$(1-2^{-1})(1-2^{-2})\dots(1-2^{-n})>2^{-2}$$
OEIS: This is the limiting probability that a large random binary matrix is nonsingular
相关帖子(1 − 3−1)(1 − 3−2)⋯(1 − 3n)

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-6-11 01:33:28
Last edited by Czhang271828 at 2023-6-11 01:54:00先算出
\[
\left(\frac{1}{2}; \frac{1}{2}\right)_\infty=\frac{2^{1/24}}{\sqrt{3}}\vartheta_2\left(\frac{1}{6}\pi,\frac{1}{2^{1/6}}\right)=0.28878809508660\ldots
\]
查一下数字, 发现文章. 看来是用 Mellin 变换做的.


直接做: $\ln(1-x)+x+x^2$ 在 $(0,\frac12)$ 单调递增, 从而
\[
(1-x)\geq e^{-x-x^2}.
\]
原式 $\geq$
\begin{align*}
\prod_{k\geq 1}e^{-2^{-k}-4^{-k}}=e^{-4/3}>\frac14.
\end{align*}
最后是因为 $8=(2\sqrt 2)^2>(2\cdot 1.414)^2>e^2$.

Comment

原不等式右侧可选 $\frac{1}{4}$,$\frac{2}{7}$,$\frac{15}{52}$,$\frac{28}{97}$,$\frac{41}{142}$,$\frac{54}{187}$,$\frac{121}{419}$,$\frac{188}{651}$,$\frac{443}{1534}$,$\frac{698}{2417}$ 等.  Posted at 2023-6-13 15:38

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2023-6-11 02:26:58
等价于$\Bbb F_2$ n阶矩阵可逆的概率大于 25%

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-6-13 13:59:14
Last edited by Czhang271828 at 2023-6-13 14:15:00补一个最快的方法: 注意到展开
\[
\prod_{n\geq 1}(1-q^n)=\sum_{d\in \mathbb Z}(-1)^dq^{(3d^2+d)/2}
\]
从而
\[
\prod_{n\geq 1}(1-2^{-n})\geq1-\dfrac12-\dfrac14+\dfrac1{32}-\sum_{k\geq 7}2^{-k}>\dfrac 14.
\]

江西卷的题目怀疑就是这样凑的:
\begin{align*}
\prod_{n\geq 1}(1-3^{-n})&\geq 1-\dfrac13-\dfrac19+\dfrac1{3^5}+\dfrac{1}{3^7}-\sum_{k\geq 12}\dfrac{1}{3^k}\\[8pt]
&>1-\dfrac{1}{3}-\dfrac{1}{9}+\dfrac{1}{3^5}+\dfrac{2}{3^8}+\dfrac1{3^9}\\[8pt]
&=\dfrac59+\dfrac{1}{3^5}+\dfrac{2}{3^8}+\dfrac1{3^9}\\[8pt]
&=\left(\dfrac{14}{25}-\dfrac{1}{9\cdot 25}\right)+\dfrac{1}{9\cdot 27}+\dfrac{2}{9\cdot 27^2}+\dfrac1{3^9}\\[8pt]
&=\dfrac{14}{25}-\dfrac{2}{9\cdot 25\cdot 27}+\dfrac{2}{9\cdot 27^2}+\dfrac1{3^9}\\[8pt]
&=\dfrac{14}{25}-\dfrac{4}{9\cdot 25\cdot 27^2}+\dfrac4{4\cdot27\cdot 27^2}\\[8pt]
&>\dfrac{14}{25}.
\end{align*}

Comment

江西卷右式可选 $\frac{1}{2}$, $\frac{5}{9}$, $\frac{14}{25}$, $\frac{191}{341}$, $\frac{368}{657}$, $\frac{545}{973}$, $\frac{722}{1289}$, $\frac{899}{1605}$, $\frac{1076}{1921}$ 等.  Posted at 2023-6-13 15:44

手机版Mobile version|Leisure Math Forum

2025-4-20 22:22 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list