|
Lagrangian=0无解?
Last edited by hbghlyj 2023-5-24 13:30objective function
$f(x) = x^TAx$
constraint function
$g(x) = a^Tx-1$
Lagrange multiplier
$L(x, \lambda) = f(x) - \lambda g(x)$
Calculate the derivative of the Lagrangian
$$\nabla L=2Ax-\lambda a$$
Solving $\nabla L=0$, we find:
$$x =\color{red}{\pmatrix{?\\?\\?}}$$
Substituting into $g(x)=0$, we get:
$$? = 0$$
Simplifying, we find:
$$\lambda = ?$$
Check the second-order conditions:
The Hessian matrix
$$H = \begin{bmatrix}
\frac{\partial^2 L}{\partial x_1^2} & \frac{\partial^2 L}{\partial x_1\partial x_2} & \frac{\partial^2 L}{\partial x_1\partial x_3} \\
\frac{\partial^2 L}{\partial x_2\partial x_1} & \frac{\partial^2 L}{\partial x_2^2} & \frac{\partial^2 L}{\partial x_2\partial x_3} \\
\frac{\partial^2 L}{\partial x_3\partial x_1} & \frac{\partial^2 L}{\partial x_3\partial x_2} & \frac{\partial^2 L}{\partial x_3^2}
\end{bmatrix}= ?$$is positive-definite, so the solution found above minimizes the objective function (the objective function is concave). |
|