Forgot password?
 Register account
View 2908|Reply 2

求 由$1$到$n^2$组成的按对角线排列的$n\times n$行列式

[Copy link]

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2017-9-20 17:12 |Read mode
Last edited by hbghlyj 2025-5-12 01:08设$A_n$是一个由$1$到$n^2$组成的按对角线排列的$n\times n$行列式,例如
$$A_4=\begin{vmatrix}
1 & 2 & 4 & 7\\3 & 5 & 8 & 11\\ 6 & 9 & 12 & 14 \\ 10 & 13 & 15 & 16
\end{vmatrix}$$
证明:当$n=2k$时,$A_n=\pm k(k+1)$;当$n=2k+1$时,$A_n=\pm(2k^2+2k+1)$。

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

 Author| isee Posted 2017-11-21 22:58
猛的发现此题还没有证明过程。。。。。。

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

hbghlyj Posted 2025-5-12 01:19
按对角线排列所得第 \((i,j)\) 元素$$
a_{i,j}
=\frac{(i+j-2)(i+j-1)}{2}+i.
$$
通过对第 $i$ 行减去第 $i-1$ 行($i=n,n-1,\dots,2$)的初等变换,可将 $A_n$ 化为新矩阵 $B_n$,其中
$$
b_{i,j}=
\begin{cases}
a_{1,j},&i=1,\\
a_{i,j}-a_{i-1,j}=i+j-1,&i\ge2.
\end{cases}
$$
对最后一行拉普拉斯展开得
$$
\det A_n=\det B_n=(-1)^{n-1}\det A_{n-1}+\det A_{n-2}.
$$
初值 $D_1=1,D_2=2$ 可直接计算。解此二阶线性递推,
$$
\det A_{2k}=\pm k(k+1),\qquad
\det A_{2k+1}=\pm(2k^2+2k+1).
$$

Mobile version|Discuz Math Forum

2025-6-5 02:08 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit