|
Author |
kuing
Posted 2018-3-26 02:33
回复 10# isee
原来有这样的结论,既然如此,那我就继续将1楼的三角玩法进行到底!
图就懒得重画了,直接拿1楼的图改一个字母:
因为
\[1=\frac{IA}{IB}\cdot\frac{IB}{IC}\cdot\frac{IC}{IA}
=\frac{\sin y}{\sin x}\cdot\frac{\sin z}{\sin x}\cdot\frac{\sin w}{\sin x},\]
积化和差并注意 $3x+y+z+w=\pi$,有
\begin{align*}
\frac{2\sin^3x}{\sin y}&=2\sin z\sin w\\
&=\cos(z-w)-\cos(z+w)\\
&=\cos(z-w)+\cos(3x+y),
\end{align*}
所以
\[\cos(z-w)=\frac{2\sin^3x}{\sin y}-\cos(3x+y),\]
那么
\begin{align*}
\sin(x+z)\sin(x+w)&=\frac{\cos(z-w)-\cos(2x+z+w)}2\\
&=\frac{\frac{2\sin^3x}{\sin y}-\cos(3x+y)+\cos(x+y)}2\\
&=\frac{\sin^3x}{\sin y}+\sin x\sin(2x+y)\\
&=\frac{\sin x}{\sin y}\bigl(\sin^2x+\sin y\sin(2x+y)\bigr)\\
&=\frac{\sin x}{\sin y}\left( \sin^2x+\frac{\cos2x-\cos(2x+2y)}2 \right)\\
&=\frac{\sin x}{\sin y}\cdot\frac{1-\cos(2x+2y)}2\\
&=\frac{\sin x}{\sin y}\cdot\sin^2(x+y),
\end{align*}
所以有
\[\frac{\sin y}{\sin x}=\frac{\sin^2(x+y)}{\sin(x+z)\sin(x+w)}
\iff\frac{IA}{IB}=\frac{b^2}{ca},\]
另外两式同理,即有
\[\frac{IA}{IB}=\frac{b^2}{ca},
\frac{IB}{IC}=\frac{c^2}{ab},
\frac{IC}{IA}=\frac{a^2}{bc},\]
所以
\[IA:IB:IC=b^2c:c^2a:a^2b.\]
至于 $IA$ 等的具体表达式明天再玩,现在先玩面积的,这回就不走7楼的路了,因为7楼明显是弯路。
根据上述结论,有
\[\frac{\S{IAB}}{\S{IBC}}=\frac{IA\sin(\pi-x-y)}{IC\sin(\pi-x-z)}
=\frac{IA}{IC}\cdot\frac{\sin(x+y)}{\sin(x+z)}
=\frac{bc}{a^2}\cdot\frac bc=\frac{b^2}{a^2},\]
另外两式同理,即有
\[\frac{\S{IAB}}{\S{IBC}}=\frac{b^2}{a^2},
\frac{\S{IBC}}{\S{ICA}}=\frac{c^2}{b^2},
\frac{\S{ICA}}{\S{IAB}}=\frac{a^2}{c^2},\]
所以
\[\S{IAB}:\S{IBC}:\S{ICA}=b^2c^2:c^2a^2:a^2b^2.\] |
|