Forgot password?
 Create new account
View 386|Reply 5

[几何] 切点三角形迭代 趋向等边三角形

[Copy link]

3156

Threads

7935

Posts

610K

Credits

Credits
63672
QQ

Show all posts

hbghlyj Posted 2025-4-25 16:34 |Read mode

从任意三角形开始,找到切点三角形 $C$。然后找到该三角形的切点三角形 $C_1$,依此类推。这样,最终的三角形 $C_\infty$ 趋近于一个等边三角形

690

Threads

110K

Posts

910K

Credits

Credits
91263
QQ

Show all posts

kuing Posted 2025-4-25 21:42
那不是很显然吗,设第 `n` 个切点三角形三个内角为 `(A_n,B_n,C_n)`,则易知
\[(A_{n+1},B_{n+1},C_{n+1})=\left( \frac{B_n+C_n}2,\frac{C_n+A_n}2,\frac{A_n+B_n}2 \right).\]

3156

Threads

7935

Posts

610K

Credits

Credits
63672
QQ

Show all posts

 Author| hbghlyj Posted 2025-4-25 21:56
$\begin{pmatrix}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 0
\end{pmatrix}^n=\begin{pmatrix}
\frac{1}{3}\left(1-\left(-\frac{1}{2}\right)^{n-1}\right) & \frac{1}{3}\left(1-\left(-\frac{1}{2}\right)^n\right) & \frac{1}{3}\left(1-\left(-\frac{1}{2}\right)^n\right) \\
\frac{1}{3}\left(1-\left(-\frac{1}{2}\right)^n\right) & \frac{1}{3}\left(1-\left(-\frac{1}{2}\right)^{n-1}\right) & \frac{1}{3}\left(1-\left(-\frac{1}{2}\right)^n\right) \\
\frac{1}{3}\left(1-\left(-\frac{1}{2}\right)^n\right) & \frac{1}{3}\left(1-\left(-\frac{1}{2}\right)^n\right) & \frac{1}{3}\left(1-\left(-\frac{1}{2}\right)^{n-1}\right)
\end{pmatrix}$
$\to\pmatrix{\frac13&\frac13&\frac13\\\frac13&\frac13&\frac13\\\frac13&\frac13&\frac13}$当$n\to\infty$

69

Threads

424

Posts

4227

Credits

Credits
4227

Show all posts

hejoseph Posted 2025-4-25 22:33
迭代的极限三角形三点应该会趋向一个定点,求出这个定点的位置就比较难了。

3156

Threads

7935

Posts

610K

Credits

Credits
63672
QQ

Show all posts

 Author| hbghlyj Posted 2025-4-25 23:00

Comment

布洛卡点  Posted 2025-4-26 01:43

Mobile version|Untroubled Math Forum

2025-5-21 17:43 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit