Forgot password?
 Create new account
View 1756|Reply 8

[数列] 毕达哥拉斯树

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2019-6-5 13:12:33 |Read mode
在单位正方形的上方作两个全等的正方形,再分别作更小的正方形,证明:这样经过无限步得到的图形,含在一个6×4的矩形里
QQ浏览器截图20180909213316.jpg

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2019-6-5 13:52:36
高度,依次是1+1+1/2+1/2+1/4+1/4+......=4
横向的宽度一样吧

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2019-6-5 14:03:13
QQ截图20190605140224.jpg
`h=2+1+1/2+1/4+\cdots =4`
`d=2(3/2+3/4+3/8+\cdots )=6`

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2019-6-5 15:11:22
这个命题有点意思

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2019-6-5 16:37:56
查了下,这个玩意怎么用MMC画,还真有

a1[{{x1_, y1_}, {x2_, y2_}, {x3_, y3_}, {x4_,
     y4_}}] := {{{x3 + (x1 - x2)/2 + (y1 - y2)/2,
     y3 + (y1 - y2)/2 - (x1 - x2)/2}, {x3,
     y3}, {x3 + (x3 - x2)/2 + (y3 - y2)/2,
     y3 + (y3 - y2)/2 - (x3 - x2)/2}, {x3 + (x4 - x2)/2 + (y4 - y2)/2,
      y3 + (y4 - y2)/2 - (x4 - x2)/2}}, {{x4,
     y4}, {x4 + (x2 - x1)/2 - (y2 - y1)/2,
     y4 + (y2 - y1)/2 + (x2 - x1)/2}, {x4 + (x3 - x1)/2 - (y3 - y1)/2,
      y4 + (y3 - y1)/2 + (x3 - x1)/2}, {x4 + (x4 - x1)/2 - (y4 - y1)/
       2, y4 + (y4 - y1)/2 + (x4 - x1)/2}}};
a2[a_] := Join @@ (a1 /@ a);
list = Join @@
   NestList[a2, {{{0., 0.}, {1., 0.}, {1., 1.}, {0., 1.}}}, 12];
Graphics[{EdgeForm[Thickness[Tiny]], Polygon[#] & /@ list},
ImageSize -> 500]

原文

2

Threads

465

Posts

6357

Credits

Credits
6357
QQ

Show all posts

爪机专用 Posted at 2019-6-5 17:00:19
回复 5# isee

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2019-6-5 17:20:33
未曾楼上各位同意,已经转走啦~

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2019-6-7 10:29:10
回复 3# kuing 更困难的问题是:去除重叠面积后,总面积的极限是多少

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2019-6-9 17:17:01
回复 8# hbghlyj


    这也有人做出来?某些区域重复几次都说不上来了,觉得也许用编程“投点”的概率办法能得到近似值,

手机版Mobile version|Leisure Math Forum

2025-4-21 14:28 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list