Forgot password?
 Register account
View 347|Reply 6

[函数] 抽象函数的求值

[Copy link]

62

Threads

175

Posts

1264

Credits

Credits
1264

Show all posts

nttz Posted 2022-8-24 08:47 |Read mode
$f(f(x)) = x^2-x+1, f(0)=?$

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2022-8-24 13:48
假设 `f` 存在,设 `f(0)=a`,则
\begin{align*}
f(a)&=f(f(0))=1,\\
f(1)&=f(f(a))=a^2-a+1,\\
f(a^2-a+1)&=f(f(1))=1,\\
f(1)&=f(f(a^2-a+1))=(a^2-a+1)^2-(a^2-a+1)+1,
\end{align*}
于是
\[a^2-a+1=(a^2-a+1)^2-(a^2-a+1)+1,\]
即 `(a^2-a+1-1)^2=0`,得 `a=0` 或 `a=1`,前者代回去显然矛盾,所以只能 `a=1`。

但是,如何证明 `f` 存在呢?

当年这帖 forum.php?mod=viewthread&tid=6512 就有过不存在的例子,18# 说的是有两个不同的不动点就不存在,而 8# 动图演示了如果没有不动点则可以构造出无数个 `f`,但现在这题是有两个相同的不动点,结论又如何呢?

62

Threads

175

Posts

1264

Credits

Credits
1264

Show all posts

 Author| nttz Posted 2022-8-26 20:43
kuing 发表于 2022-8-24 13:48
假设 `f` 存在,设 `f(0)=a`,则
\begin{align*}
f(a)&=f(f(0))=1,\\
为啥0不是?

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2022-8-26 20:47
如果 a=0 那就 f(0)=0 且 f(0)=f(f(0))=1 矛盾啊

62

Threads

175

Posts

1264

Credits

Credits
1264

Show all posts

 Author| nttz Posted 2022-8-26 20:54
kuing 发表于 2022-8-26 20:47
如果 a=0 那就 f(0)=0 且 f(0)=f(f(0))=1 矛盾啊

81

Threads

165

Posts

1645

Credits

Credits
1645

Show all posts

APPSYZY Posted 2022-9-3 18:45

81

Threads

165

Posts

1645

Credits

Credits
1645

Show all posts

APPSYZY Posted 2022-9-6 10:44
APPSYZY 发表于 2022-9-3 18:45
Do there exist functions $f$ such that $f(f(x))=x^2−x+1$ for every $x$?
链接的内容不仅给出 $f$ 存在性证明,并说明这样的连续的函数是无穷多的,连续可微的函数是唯一的。

Mobile version|Discuz Math Forum

2025-6-4 17:31 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit