|
Author |
hbghlyj
Posted 2025-5-18 22:10
Given a cyclic quadrilateral $ABCD$ and a point $P$ such that $\angle PAB = \angle PBC = \angle PCD = \angle PDA = \omega$. Prove that $AB \cdot CD = BC \cdot AD$.
jstor.org/stable/3603502
Let the internal angles of the quadrilateral be $A = \angle DAB$, $B = \angle ABC$, $C = \angle BCD$, $D = \angle CDA$.
The problem states $\angle PAB = \angle PBC = \angle PCD = \angle PDA = \omega$.
Consider the angles:
$\angle PBA = \angle ABC - \angle PBC = B - \omega$ (assuming P is positioned such that $\omega < B$, etc.)
$\angle PCB = C - \omega$
$\angle PDC = D - \omega$
$\angle PAD = A - \omega$
From the sine rule applied to triangles formed by P and vertices (e.g., $\triangle APB, \triangle BPC$, etc.):
\begin{align*}
\frac{BP}{\sin(\angle PAB)} &= \frac{AP}{\sin(\angle PBA)} \implies \frac{BP}{\sin \omega} = \frac{AP}{\sin(B-\omega)} \\
\frac{CP}{\sin(\angle PBC)} &= \frac{BP}{\sin(\angle PCB)} \implies \frac{CP}{\sin \omega} = \frac{BP}{\sin(C-\omega)} \\
\frac{DP}{\sin(\angle PCD)} &= \frac{CP}{\sin(\angle PDC)} \implies \frac{DP}{\sin \omega} = \frac{CP}{\sin(D-\omega)} \\
\frac{AP}{\sin(\angle PDA)} &= \frac{DP}{\sin(\angle PAD)} \implies \frac{AP}{\sin \omega} = \frac{DP}{\sin(A-\omega)}
\end{align*}
Rearranging these gives:
\begin{align*}
AP \sin \omega &= BP \sin(B-\omega) \\
BP \sin \omega &= CP \sin(C-\omega) \\
CP \sin \omega &= DP \sin(D-\omega) \\
DP \sin \omega &= AP \sin(A-\omega)
\end{align*}
Multiplying these four equations together:
\[ (AP \cdot BP \cdot CP \cdot DP) (\sin \omega)^4 = (AP \cdot BP \cdot CP \cdot DP) \sin(A-\omega)\sin(B-\omega)\sin(C-\omega)\sin(D-\omega) \]
Dividing by $AP\cdot BP\cdot CP\cdot DP$
\[ (\sin \omega)^4 = \sin(A-\omega)\sin(B-\omega)\sin(C-\omega)\sin(D-\omega) \]
Since $ABCD$ is cyclic, $C = 180^\circ - A$ and $D = 180^\circ - B$.
So, $\sin(C-\omega) = \sin(180^\circ - A - \omega) = \sin(A+\omega)$.
And $\sin(D-\omega) = \sin(180^\circ - B - \omega) = \sin(B+\omega)$.
Substituting these into the equation:
\[ (\sin \omega)^4 = \sin(A-\omega)\sin(B-\omega)\sin(A+\omega)\sin(B+\omega) \]
Using the identity $\sin(x-y)\sin(x+y) = \sin^2 x - \sin^2 y$:
\[ (\sin \omega)^4 = (\sin^2 A - \sin^2 \omega)(\sin^2 B - \sin^2 \omega) \]
Divide by $(\sin\omega)^4 \sin^2 A \sin^2 B$
\[ \frac{1}{\sin^2 A \sin^2 B} = \frac{\sin^2 A - \sin^2 \omega}{\sin^2\omega \sin^2 A} \cdot \frac{\sin^2 B - \sin^2 \omega}{\sin^2\omega \sin^2 B} \]
\[ \csc^2 A \csc^2 B = \left(\frac{1}{\sin^2\omega} - \frac{1}{\sin^2 A}\right) \left(\frac{1}{\sin^2\omega} - \frac{1}{\sin^2 B}\right) \]
\[ \csc^2 A \csc^2 B = (\csc^2\omega - \csc^2 A)(\csc^2\omega - \csc^2 B) \]
which implies
\begin{equation} \label{eq:1}
\csc^2\omega = \csc^2 A + \csc^2 B \quad
\end{equation}
Let $AB=a, BC=b, CD=c, DA=d$.
The angles subtended by the sides at point $P$ are given as:
$\angle APB = 180^\circ - B = D$ (where $B$ is $\angle ABC$, etc.)
$\angle BPC = 180^\circ - C = A$
$\angle CPD = 180^\circ - D = B$
$\angle DPA = 180^\circ - A = C$
Using the sine rule:
In $\triangle PAB$: $\frac{BP}{\sin\omega} = \frac{a}{\sin(\angle APB)} = \frac{a}{\sin D}$. So $BP = \frac{a \sin\omega}{\sin D}$.
In $\triangle PBC$: $\frac{BP}{\sin(C-\omega)} = \frac{b}{\sin(\angle BPC)} = \frac{b}{\sin A}$. So $BP = \frac{b \sin(C-\omega)}{\sin A}$.
Equating the expressions for $BP$:
\[ \frac{a \sin\omega}{\sin D} = \frac{b \sin(C-\omega)}{\sin A} \]
\[ \frac{a}{b} = \frac{\sin(C-\omega)\sin D}{\sin A \sin\omega} \]
Since $ABCD$ is cyclic, $C = 180^\circ - A \implies \sin(C-\omega) = \sin(180^\circ - A - \omega) = \sin(A+\omega)$.
And $D = 180^\circ - B \implies \sin D = \sin B$.
So,
\[ \frac{a}{b} = \frac{\sin(A+\omega)\sin B}{\sin A \sin\omega} = \frac{(\sin A \cos\omega + \cos A \sin\omega)\sin B}{\sin A \sin\omega} = (\cot\omega + \cot A)\sin B \]
Similarly, for $DP$:
In $\triangle PCD$: $\frac{DP}{\sin\omega} = \frac{c}{\sin(\angle CPD)} = \frac{c}{\sin B}$. So $DP = \frac{c \sin\omega}{\sin B}$.
In $\triangle PDA$: $\frac{DP}{\sin(A-\omega)} = \frac{d}{\sin(\angle DPA)} = \frac{d}{\sin C}$. So $DP = \frac{d \sin(A-\omega)}{\sin C}$.
Equating the expressions for $DP$:
\[ \frac{c \sin\omega}{\sin B} = \frac{d \sin(A-\omega)}{\sin C} \]
\[ \frac{c}{d} = \frac{\sin(A-\omega)\sin B}{\sin C \sin\omega} \]
Since $ABCD$ is cyclic, $\sin C = \sin A$.
So,
\[ \frac{c}{d} = \frac{\sin(A-\omega)\sin B}{\sin A \sin\omega} = \frac{(\sin A \cos\omega - \cos A \sin\omega)\sin B}{\sin A \sin\omega} = (\cot\omega - \cot A)\sin B \]
Now, multiply $\frac{a}{b}$ and $\frac{c}{d}$:
\begin{align*} \frac{ac}{bd} &= [(\cot\omega + \cot A)\sin B] \cdot [(\cot\omega - \cot A)\sin B] \\ &= (\cot^2\omega - \cot^2 A)\sin^2 B \end{align*}
Using the identity $\cot^2 x - \cot^2 y = (\csc^2 x - 1) - (\csc^2 y - 1) = \csc^2 x - \csc^2 y$:
\[ \frac{ac}{bd} = (\csc^2\omega - \csc^2 A)\sin^2 B \]
From relation \eqref{eq:1}, $\csc^2\omega = \csc^2 A + \csc^2 B$.
So, $\csc^2\omega - \csc^2 A = \csc^2 B$.
Substituting this into the expression for $\frac{ac}{bd}$:
\[ \frac{ac}{bd} = (\csc^2 B) \sin^2 B = \frac{1}{\sin^2 B} \cdot \sin^2 B = 1 \]
Therefore, $ac = bd$. This means $AB \cdot CD = BC \cdot AD$. |
|