Forgot password?
 Register account
View 1753|Reply 1

[不等式] 双三元又来了,楼主可以接近手工证明

[Copy link]

29

Threads

53

Posts

675

Credits

Credits
675

Show all posts

wanhuihua Posted 2018-4-16 22:08 |Read mode
$$
\eqalign{
  & {\cal 设}x,y,z,a,b,c{\cal 为}{\cal 正}{\cal 数}{\text{ ,}}\max (x,y,z) \geqslant \min (a,b,c){\text{.}}  \cr
  & \max (a,b,c) \geqslant \min (x,y,z){\text{.}}{\cal 求}{\cal 证}:  \cr
  & \frac{{b^2 }}
{a} + \frac{{c^2 }}
{b} + \frac{{a^2 }}
{c} + \frac{{y^2 }}
{x} + \frac{{z^2 }}
{y} + \frac{{x^2 }}
{z} \geqslant {\text{ }}\sqrt {6(a^2  + b^2  + c^2  + x^2  + y^2  + z^2 )}   \cr
  & Wanhuihua{\text{ 20170306}} \cr}
$$

29

Threads

53

Posts

675

Credits

Credits
675

Show all posts

 Author| wanhuihua Posted 2018-4-16 22:10
近期版主活跃,乘热打铁,难度或许和114有奖征解差不多

Mobile version|Discuz Math Forum

2025-5-31 10:50 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit