Forgot password?
 Create new account
View 1837|Reply 0

[不等式] 双3元一次不等式

[Copy link]

30

Threads

52

Posts

675

Credits

Credits
675

Show all posts

wanhuihua Posted at 2017-8-4 16:27:50 |Read mode
Last edited by hbghlyj at 2025-3-19 19:12:09设 $a, b, c, x, y, z$ 为正数
求证
\[
\max \left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}, \frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right) \geq \frac{a+x}{b+y}+\frac{b+y}{c+z}+\frac{c+z}{a+x}
\]
Wanhuihua 20170527

手机版Mobile version|Leisure Math Forum

2025-4-21 01:38 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list