Forgot password?
 Create new account
View 143|Reply 1

[不等式] 代数式的下界

[Copy link]

16

Threads

35

Posts

328

Credits

Credits
328

Show all posts

Canhuang Posted at 2023-3-11 19:16:45 From the mobile phone |Read mode
$\mathbb{R_+}:\sum \frac{x}{2x+y+z}$

701

Threads

110K

Posts

910K

Credits

Credits
94145
QQ

Show all posts

kuing Posted at 2023-3-11 19:25:03
\[\sum \frac x{2x+y+z}>\sum \frac x{2(x+y+z)}=\frac 12,\]
当 `x=y\to0` 时 `\LHS\to1/2`。

手机版Mobile version|Leisure Math Forum

2025-4-20 12:04 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list