Forgot password
 Register account
View 22174|Reply 11

[不等式] 求证一道n元分式不等式

[Copy link]

420

Threads

910

Posts

0

Reputation

Show all posts

lemondian posted 2025-5-19 15:46 |Read mode
设$a_1,a_2,\cdots ,a_n$为正实数,记$S=a_1^n+a_2^n+\cdots +a_n^n$,求证$$\dfrac{1}{S-a_1^n+a_1a_2\cdots a_n}+\dfrac{1}{S-a_2^n+a_1a_2\cdots a_n}+\cdots \dfrac{1}{S-a_n^n+a_1a_2\cdots a_n}\leqslant \dfrac{1}{a_1a_2\cdots a_n}$$

677

Threads

110K

Posts

214

Reputation

Show all posts

kuing posted 2025-5-19 17:01
很简单,由
\[S-a_1^n=a_2^n+a_3^n+\cdots+a_n^n\geqslant a_2a_3\cdots a_n(a_2+a_3+\cdots+a_n),\]

\begin{align*}
\frac1{S-a_1^n+a_1a_2\cdots a_n}&\leqslant\frac1{a_2a_3\cdots a_n(a_2+a_3+\cdots+a_n+a_1)}\\
&=\frac1{a_1a_2a_3\cdots a_n}\cdot\frac{a_1}{a_1+a_2+\cdots+a_n},
\end{align*}
其余项类似,求和即得。

420

Threads

910

Posts

0

Reputation

Show all posts

original poster lemondian posted 2025-5-19 17:02
Last edited by lemondian 2025-5-23 15:33显然:
1#的3元与4元如下:
例1:若$a,b,c>0$,求证:$\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\dfrac{1}{c^3+a^3+abc}\leqslant \dfrac{1}{abc}$.
例2:若$a,b,c,d>0$,求证:$\dfrac{1}{a^4+b^4+c^4+abcd}+\dfrac{1}{b^4+c^4+d^4+abcd}+\dfrac{1}{c^4+d^4+a^4+abcd}+\dfrac{1}{d^4+a^4+b^4+abcd} \leqslant \dfrac{1}{abcd}$.

然后有人说,例1与例2可以统一推广为题2,并可以进一上步推广为题3:
题2:设正整数$n>m$,$x_k>0,x_1x_2\cdots x_n=1$.
求证:$\sum_{k=1}^n\frac{1}{x_k+x_{k+1}+\cdots x_{k+m-1}+n-m}\leqslant 1$.

题3:设正整数$n>m$,$x_k>0,x_1x_2\cdots x_n=1$,实数$t\geqslant n-m$.
求证:$\sum_{k=1}^n\frac{1}{x_k+x_{k+1}+\cdots x_{k+m-1}+t}\leqslant  \dfrac{n}{t+m}$.


我有2个问题:
(1)为什么例1与例2可推广为题2与题3?
(2)题2与题3如何证明?

677

Threads

110K

Posts

214

Reputation

Show all posts

kuing posted 2025-5-21 02:50
Last edited by kuing 2025-5-25 04:10n=m+1 明显等价于 1# 啊,还用证吗

@lemondian 最近没什么撸题欲……😌😪……

420

Threads

910

Posts

0

Reputation

Show all posts

original poster lemondian posted 2025-5-26 15:56
Last edited by hbghlyj 2025-5-26 20:46
lemondian 发表于 2025-5-19 17:02
显然:
1#的3元与4元如下:
例1:若$a,b,c>0$,求证:$\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\df ...
只需证 $\frac{1}{x_1+x_2+\cdots+x_m+n-m} \leqslant \frac{x_{m+1}^t+x_{m+2}^t+\cdots+x_n^t}{(n-m)(x_1^t+x_2^t+\cdots+x_n^t)}$ ,其中 $t$ 待定
等价于 $(n-m)\left(x_1^t+x_2^t+\cdots+x_m^t\right) \leqslant\left(x_1+x_2+\cdots+x_m\right)\left(x_{m+1}^t+x_{m+2}^t+\cdots+x_n^t\right)$
由 $x_{m+1}^t+x_{m+2}^t+\cdots+x_n^t \geqslant(n-m)\left(x_{m+1} x_{m+2} \cdots x_n\right)^{\frac{t}{n-m}}$,只需证$x_1^t+x_2^t+\cdots+x_m^t \leqslant\left(x_1+x_2+\cdots+x_m\right)\left(x_{m+1}, x_{m+2} \cdots x_n\right)^{\frac{t}{n-m}}$
我们希望 $0<t<1$,如此可利用 $x_1+x_2+\cdots+x_m$ $\geqslant \frac{1}{m}\left(x_1^t+x_2^t+\cdots+x_m^t\right)\left(x_1^{1-t}+x_2^{1-t}+\cdots+x_m^{1-t}\right)$ (切比雪夫不等式)
$\geqslant\left(x_1^t+x_2^t+\cdots+x_m^t\right)\left(x_1 x_2 \cdots x_m\right)^{\frac{1-t}{m}}$
故只需证 $\left(x_1 x_2 \cdots x_m\right)^{\frac{1-t}{m}}\left(x_{m+1} x_{m+2} \cdots x_n\right)^{\frac{t}{n-m}} \geqslant 1$
于是令 $\frac{1-t}{m}=\frac{t}{n-m}$ 即可,解得 $t=\frac{n-m}{n}$,发现满足 $0<t<1$

Comment

这个证法可以不?  posted 2025-5-26 16:46

420

Threads

910

Posts

0

Reputation

Show all posts

original poster lemondian posted 2025-5-26 17:36
lemondian 发表于 2025-5-19 17:02
显然:
1#的3元与4元如下:
例1:若$a,b,c>0$,求证:$\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\df ...
如何由推广(题2,题3)反过来得到例1,例2呢?

Comment

我不是说了吗,n=m+1 时就等价于 1# 啊  posted 2025-5-26 17:37
对对  posted 2025-5-27 11:03

420

Threads

910

Posts

0

Reputation

Show all posts

original poster lemondian posted 2025-5-27 11:07
lemondian 发表于 2025-5-19 17:02
显然:
1#的3元与4元如下:
例1:若$a,b,c>0$,求证:$\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\df ...
题2:设正整数$n>m$,$x_k>0,x_1x_2\cdots x_n=1$.
求证:$\sum_{k=1}^n\frac{1}{x_k+x_{k+1}+\cdots x_{k+m-1}+n-m}\leqslant 1$.

这个不等式的左边有点怪怪的,不用求和符号,则最后一项是不是这样?
$\frac{1}{x_n+x_1+x_2+\cdots x_{m-2}+n-m}$

420

Threads

910

Posts

0

Reputation

Show all posts

original poster lemondian posted 2025-5-31 00:45
lemondian 发表于 2025-5-26 15:56
只需证 $\frac{1}{x_1+x_2+\cdots+x_m+n-m} \leqslant \frac{x_{m+1}^t+x_{m+2}^t+\cdots+x_n^t}{(n-m)(x_ ...
题3如何证明?与题2的证明有关不?

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-5 18:12 GMT+8

Powered by Discuz!

Processed in 0.021900 seconds, 53 queries