Forgot password?
 Create new account
View 3970|Reply 4

[不等式] 求证一道n元分式不等式

[Copy link]

413

Threads

899

Posts

110K

Credits

Credits
10941

Show all posts

lemondian Posted 2025-5-19 15:46 |Read mode
设$a_1,a_2,\cdots ,a_n$为正实数,记$S=a_1^n+a_2^n+\cdots +a_n^n$,求证:$\dfrac{1}{S-a_1^n+a_1a_2\cdots a_n}+\dfrac{1}{S-a_2^n+a_1a_2\cdots a_n}+\cdots \dfrac{1}{S-a_n^n+a_1a_2\cdots a_n}\leqslant \dfrac{1}{a_1a_2\cdots a_n}$。

690

Threads

110K

Posts

910K

Credits

Credits
91263
QQ

Show all posts

kuing Posted 2025-5-19 17:01
很简单,由
\[S-a_1^n=a_2^n+a_3^n+\cdots+a_n^n\geqslant a_2a_3\cdots a_n(a_2+a_3+\cdots+a_n),\]

\begin{align*}
\frac1{S-a_1^n+a_1a_2\cdots a_n}&\leqslant\frac1{a_2a_3\cdots a_n(a_2+a_3+\cdots+a_n+a_1)}\\
&=\frac1{a_1a_2a_3\cdots a_n}\cdot\frac{a_1}{a_1+a_2+\cdots+a_n},
\end{align*}
其余项类似,求和即得。

413

Threads

899

Posts

110K

Credits

Credits
10941

Show all posts

 Author| lemondian Posted 2025-5-19 17:02
Last edited by lemondian at 2025-5-20 20:38显然:
1#的3元与4元如下:
例1:若$a,b,c>0$,求证:$\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\dfrac{1}{c^3+a^3+abc}\leqslant \dfrac{1}{abc}$.
例2:若$a,b,c,d>0$,求证:$\dfrac{1}{a^4+b^4+c^4+abcd}+\dfrac{1}{b^4+c^4+d^4+abcd}+\dfrac{1}{c^4+d^4+a^4+abcd}+\dfrac{1}{d^4+a^4+b^4+abcd} \leqslant \dfrac{1}{abcd}$.

然后有人说,例1与例2可以统一推广为题2,并可以进一上步推广为题3:
题2:设正整数$n>m$,$x_k>0,x_1x_2\cdots x_n=1$.
求证:$\dfrac{1}{x_1+x_2+\cdots x_{1+m-1}+n-m}+\dfrac{1}{x_2+x_3+\cdots x_{2+m-1}+n-m}+\cdots +\dfrac{1}{x_n+x_{n+1}+\cdots x_{n+m-1}+n-m}\leqslant 1$.

题3:设正整数$n>m$,$x_k>0,x_1x_2\cdots x_n=1$,实数$t\geqslant n-m$.
求证:$\dfrac{1}{x_1+x_2+\cdots x_{1+m-1}+t}+\dfrac{1}{x_2+x_3+\cdots x_{2+m-1}+t}+\cdots +\dfrac{1}{x_n+x_{n+1}+\cdots x_{n+m-1}+t}\leqslant \dfrac{n}{t+m}$.


我有2个问题:
(1)为什么例1与例2可推广为题2与题3?
(2)题2与题3如何证明?

690

Threads

110K

Posts

910K

Credits

Credits
91263
QQ

Show all posts

kuing Posted 2025-5-21 02:50
hbghlyj 发表于 2025-5-21 02:49
https://math.stackexchange.com/a/5066942
题2当 \(n=m+1\) 时,记
\[
n=m+1 明显等价于 1# 啊,还用证吗

Mobile version|Untroubled Math Forum

2025-5-21 13:02 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit