Forgot password?
 Create new account
View 225|Reply 5

[不等式] 分式不等式的证明

[Copy link]

16

Threads

35

Posts

329

Credits

Credits
329

Show all posts

Canhuang Posted at 2023-3-12 05:34:31 From the mobile phone |Read mode
$\mathbb{R_+}: \frac{3}{10} \leqslant \sum \frac{a^3}{2a^3+(b+c)^3} < \frac{2}{3}$

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

hbghlyj Posted at 2023-3-12 06:24:36

$\frac{3}{10} \leq\sum \frac{a^3}{2a^3+(b+c)^3} $

${b+c\over2}\le\sqrt[3]{b^3+c^3\over2}\implies(b+c)^3\le4(b^3+c^3)\implies\sum \frac{a^3}{2a^3+(b+c)^3}\ge\frac{a^3}{2a^3+4(b^3+c^3)}$
只需证明$\forall a,b,c>0:\sum\frac{a}{a+2(b+c)}\ge\frac35$$$\sum\left(\frac{a}{a+2(b+c)}+1\right)=2(a+b+c)\sum\frac1{a+2(b+c)}=\frac25\left(\sum a+2(b+c)\right)\left(\sum\frac1{a+2(b+c)}\right)\ge\frac25\times9=\frac{18}5$$

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

hbghlyj Posted at 2023-3-12 07:19:55

相关

Last edited by hbghlyj at 2023-3-12 14:32:00@luofangxiang AOPS [derived from @can_hang2007 inequality]
\begin{equation}\sum \frac{a^3}{13a^3+(b+c)^3} \le\frac17\label1\end{equation}
(1:1:1)(1:1:0)取等

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2023-3-12 17:58:52
\[\mathbb{R_+}: \frac{3}{10} \leqslant \sum \frac{a^3}{2a^3+(b+c)^3} < \frac{2}{3}\]

左边 2# 已经证得很好了。

而右边比左边难,我想到一个分类的证法。

由对称性不妨设 `a\geqslant b\geqslant c`。

(1)若 `a\leqslant5(b+c)`,下面证明
\[\frac{a^3}{2a^3+(b+c)^3}\leqslant\frac{16}3\cdot\frac{a^3(b+c)}{(a+b+c)^4},\quad(*)\]
记 `b+c=t`,则上式作差分解为
\[\RHS-\LHS=\frac{a^3(a-t)^2(13t^2+14at-3a^2)}{3(2a^3+t^3)(a+t)^4},\]
易证当 `a\leqslant5t` 时 `13t^2+14at-3a^2>0`,故式 (*) 得证,同理有类似于式 (*) 的另外两式,故
\[\sum\frac{a^3}{2a^3+(b+c)^3}\leqslant\frac{16}3\cdot\frac{\sum a^3(b+c)}{(a+b+c)^4},\]
故要证原不等式右边只需证
\[8\sum a^3(b+c)\leqslant(a+b+c)^4,\]
上式可配方为
\[(a^2+b^2+c^2-2ab-2bc-2ca)^2+8abc(a+b+c)\geqslant0,\]
显然成立;

(2)若 `a>5(b+c)`,则有
\begin{align*}
\frac{a^3}{2a^3+(b+c)^3}&<\frac12,\\
\frac{b^3}{2b^3+(c+a)^3}&<\frac1{2+5^3},\\
\frac{c^3}{2c^3+(a+b)^3}&<\frac1{2+5^3},
\end{align*}
所以
\[\sum\frac{a^3}{2a^3+(b+c)^3}<\frac12+\frac2{2+5^3}<\frac12+\frac2{2+10}=\frac23.\]

综上所述,原不等式右边成立。

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

hbghlyj Posted at 2023-3-12 21:33:13
仿照\eqref{1}
$n=4,2^{n+1}-3=29$
\[\sum \frac{a^4}{29a^4+(b+c)^4}\le\frac1{15}\]
(1:1:1)(1:1:0)取等
15MaxValue[{Total[#1^4/(29#1^4+(#2+#3)^4)&@@RotateLeft[{a,b,c},#]&/@{1,2,3}],a>0,b>0,c>0},{a,b,c}]

手机版Mobile version|Leisure Math Forum

2025-4-21 01:33 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list