Forgot password?
 Register account
View 265|Reply 2

[不等式] 求证一个n元分式不等式

[Copy link]

414

Threads

905

Posts

110K

Credits

Credits
10998

Show all posts

lemondian Posted 2025-1-25 13:37 |Read mode
若$0<x_i<1(i=1,2,\cdots ,n,n\geqslant 2)$,且$x_1+x_2+\cdots +x_n=1$。求证:$\dfrac{1}{(1+x_1^2)^2}+ \dfrac{1}{(1+x_2^2)^2}+\cdots ++ \dfrac{1}{(1+x_n^2)^2}>n-1$

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2025-1-25 13:52
不会抄错题了吧?不然也太简单了点:对 `0<x<1` 有
\[\frac1{(1+x^2)^2}>\frac{1-x^4}{(1+x^2)^2}=\frac{(1-x)(1+x)}{1+x^2}>1-x.\]

Comment

题目是这样的哩  Posted 2025-1-25 21:18

Mobile version|Discuz Math Forum

2025-6-5 01:24 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit