Forgot password?
 Register account
View 481|Reply 1

[不等式] 一个有趣的不等式

[Copy link]

9

Threads

7

Posts

225

Credits

Credits
225

Show all posts

anhcanhsat97 Posted 2023-10-6 22:36 |Read mode
Last edited by hbghlyj 2025-5-16 04:16已知 `x_i>0`(`i=1`, `2`, `\dots`, `n`, `n\geqslant3`)满足 `x_1x_2\cdots x_n=1`,则
\[\sum_{i=1}^n\frac1{x_i^2-2x_i\cos\frac{2\pi}n+1}\geqslant1.\]

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2023-11-6 08:49
Last edited by hbghlyj 2025-5-16 04:16当 `n=3` 时就是经典题:`a,b,c>0,abc=1`,则 `\sum\dfrac1{a^2+a+1}\geqslant1`;

当 `n=4` 时变成:`a,b,c,d>0,abcd=1`,则 `\sum\dfrac1{a^2+1}\geqslant1`,这取不了等喔……
(但可以加强为 `\sum\dfrac1{(a+1)^2}\geqslant1` 👈️这也是经典题😁

`n\geqslant5` 未有想法……

Mobile version|Discuz Math Forum

2025-6-5 19:57 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit