|
Last edited by hbghlyj 2025-4-23 10:52设 $n$ 为正整数,$x_1, x_2, \ldots, x_n$ 为正实数,证明
$$
n^2 \sum_{i=1}^n x_i \sum_{i=1}^n \frac{1}{x_i} \geqslant n^2 \sum_{i=1}^n \sum_{j=1}^n \frac{x_i}{2 x_i+x_j}+\sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n \sum_{l=1}^n \frac{2 x_i x_k}{x_i x_l+x_j x_k+x_j x_l} .
$$ |
|