Forgot password?
 Register account
View 501|Reply 4

[不等式] 证明不等式

[Copy link]

76

Threads

34

Posts

914

Credits

Credits
914

Show all posts

大佬最帅 Posted 2021-11-7 16:02 |Read mode
Last edited by hbghlyj 2025-4-23 10:52设 $n$ 为正整数,$x_1, x_2, \ldots, x_n$ 为正实数,证明
$$
n^2 \sum_{i=1}^n x_i \sum_{i=1}^n \frac{1}{x_i} \geqslant n^2 \sum_{i=1}^n \sum_{j=1}^n \frac{x_i}{2 x_i+x_j}+\sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n \sum_{l=1}^n \frac{2 x_i x_k}{x_i x_l+x_j x_k+x_j x_l} .
$$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2021-11-7 16:18
我擦,这么多重 `\sum`

Comment

偶看到两重就绕道了~  Posted 2025-4-23 21:45

76

Threads

34

Posts

914

Credits

Credits
914

Show all posts

 Author| 大佬最帅 Posted 2021-11-7 16:21
回复 2# kuing
我功力弱,搞不下来,看看kuing大佬行不行

76

Threads

34

Posts

914

Credits

Credits
914

Show all posts

 Author| 大佬最帅 Posted 2021-11-8 18:58
回复 2# kuing
感觉都是吓唬人的

Mobile version|Discuz Math Forum

2025-5-31 10:51 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit