Forgot password?
 Register account
View 282|Reply 1

[不等式] 来个n元的

[Copy link]

7

Threads

8

Posts

195

Credits

Credits
195

Show all posts

创之谜 Posted 2025-3-17 16:32 |Read mode
已知\(a_1\sim a_n\)为正实数.求证:\[\sum\limits_{k=1}^{n}\dfrac{k^2}{a_1+a_2+\cdots+a_k }<4\sum\limits_{k=1}^{n}\dfrac{k}{a_k }\]

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2025-3-17 18:23
由柯西有
\[\frac{(1+2+\cdots+k)^2}{a_1+a_2+\cdots+a_k}\leqslant\frac1{a_1}+\frac{2^2}{a_2}+\cdots+\frac{k^2}{a_k},\]

\[\frac{k^2}{a_1+a_2+\cdots+a_k}\leqslant\frac4{(k+1)^2}\left(\frac1{a_1}+\frac{2^2}{a_2}+\cdots+\frac{k^2}{a_k}\right),\]
求和得
\begin{align*}
\sum_{k=1}^n\frac{k^2}{a_1+a_2+\cdots+a_k}&\leqslant4\sum_{k=1}^n\frac1{(k+1)^2}\left(\frac1{a_1}+\frac{2^2}{a_2}+\cdots+\frac{k^2}{a_k}\right)\\
&=4\sum_{k=1}^n\sum_{i=k}^n\frac1{(i+1)^2}\cdot\frac{k^2}{a_k},
\end{align*}
因为
\[\sum_{i=k}^n\frac1{(i+1)^2}<\sum_{i=k}^n\frac1{i(i+1)}=\frac1k-\frac1{n+1}<\frac1k,\]
所以
\[\sum_{k=1}^n\frac{k^2}{a_1+a_2+\cdots+a_k}<4\sum_{k=1}^n\frac k{a_k}.\]

Mobile version|Discuz Math Forum

2025-6-5 07:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit