Forgot password?
 Create new account
View 163|Reply 1

[不等式] 三个类似的$n$不等式

[Copy link]

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

lemondian Posted at 2024-3-21 15:13:03 |Read mode
求证三个类似的不等式:
(1)若$n$为正整数,且$x_1,x_2,\cdots ,x_n>1,x_1x_2\cdots x_n=n+1$,证明:$(\dfrac{1}{1^2(x_1-1)}+1)(\dfrac{1}{2^2(x_2-1)}+1)\cdots (\dfrac{1}{n^2(x_n-1)}+1)\geqslant n+1.$
(2)若$n$为正整数,且$x_1,x_2,\cdots ,x_n>1,x_1x_2\cdots x_n=n+1$,证明:$(\dfrac{1}{1^2x_1(x_1-1)}+1)(\dfrac{1}{2^2x_2(x_2-1)}+1)\cdots (\dfrac{1}{n^2x_n(x_n-1)}+1)\geqslant \dfrac{n+2}{2}.$
(3)若$n$为正整数,且$x_1,x_2,\cdots ,x_n>1,x_1x_2\cdots x_n=n+1$,证明:$(\dfrac{1}{1^2(x_1-1)}+x_1)(\dfrac{1}{2^2(x_2-1)}+x_2)\cdots (\dfrac{1}{n^2(x_n-1)}+x_n)\geqslant \dfrac{(n+1)(n+2)}{2}.$

此外,还有其它的类似不等式吗?

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

 Author| lemondian Posted at 2024-3-27 09:27:21
顶顶,求助,特别是第三个不等式的证明

手机版Mobile version|Leisure Math Forum

2025-4-21 14:31 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list