Forgot password?
 Create new account
View 157|Reply 2

[不等式] 再来一个不等式

[Copy link]

6

Threads

2

Posts

43

Credits

Credits
43

Show all posts

flvbin Posted at 2025-1-24 16:27:03 |Read mode
已知:$ a,b,c>0,a+b+c+abc=4 $,证明:
$ \frac{3}{ab+bc+ca+2} \geqslant \frac{1}{a+b+3c}+\frac{1}{b+c+3a}+\frac{1}{c+a+3b}\geqslant \frac{3}{a+b+c+2}$

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2025-1-24 21:24:22
记 $p=a+b+c$, $q=ab+bc+ca$, $r=abc$,若 `p<3` 则 `r<1` 显然不能满足 `p+r=4`,又显然 `p<4`,即有 `p\in[3,4)`。

由条件及 Schur 不等式有
\[4-p=r\geqslant\frac{4pq-p^3}9\riff q\leqslant\frac{36-9p+p^3}{4p},\quad(*)\]
因为
\[\sum\frac1{a+b+3c}=\sum\frac1{p+2a}=\frac{7p^2+4q}{3p^3+4pq+8r}=\frac{7p^2+4q}{3p^3+4pq-8p+32},\]
所以原不等式可写成
\[\frac3{q+2}\geqslant\frac{7p^2+4q}{3p^3+4pq-8p+32}\geqslant\frac3{p+2},\]
先证右边,去分母整理为
\[-48+12p+7p^2-p^3\geqslant4(p-1)q,\]
由式 (*) 知只需证
\[-48+12p+7p^2-p^3\geqslant(p-1)\frac{36-9p+p^3}p,\]
上式可分解为
\[\frac{(4-p)(p-3)(2p^2+6p-3)}p\geqslant0,\]
由 `p\in[3,4)` 知上式显然成立,右边得证;

再证左边,去分母整理为
\[96-24p-14p^2+9p^3\geqslant4q^2+(8-12p+7p^2)q,\]
由式 (*) 知只需证
\[96-24p-14p^2+9p^3\geqslant4\left(\frac{36-9p+p^3}{4p}\right)^2+(8-12p+7p^2)\frac{36-9p+p^3}{4p},\]
上式可分解为
\[\frac{(4-p)(p-3)(8p^4+8p^3-57p^2+33p+108)}{4p^2}\geqslant0,\]
由 `p\in[3,4)` 易知上式成立,左边得证。

6

Threads

2

Posts

43

Credits

Credits
43

Show all posts

 Author| flvbin Posted at 2025-1-25 08:55:57
kuing 发表于 2025-1-24 21:24
记 $p=a+b+c$, $q=ab+bc+ca$, $r=abc$,若 `p<3` 则 `r<1` 显然不能满足 `p+r=4`,又显然 `p<4`,即有 `p\i ...

手机版Mobile version|Leisure Math Forum

2025-4-20 22:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list