Forgot password?
 Register account
View 2138|Reply 4

[不等式] 求证三元轮换分式不等式

[Copy link]

16

Threads

25

Posts

321

Credits

Credits
321

Show all posts

dim Posted 2016-6-14 00:50 |Read mode
Last edited by hbghlyj 2025-5-16 22:49$x, y, z>0$. 证明 $(x+y+z)^2 \geq 2(x y+y z+z x)\left(\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}\right)$.

2

Threads

17

Posts

133

Credits

Credits
133

Show all posts

阿鲁 Posted 2016-6-14 01:08
可加强为
\[\frac13(x+y+z)^2+2(xy+yz+zx)\geqslant 2(xy+yz+zx)\left( \frac y{x+y}+\frac z{y+z}+\frac x{z+x} \right).\]

由均值和 Vasc 不等式得
\begin{align*}
2(xy+yz+zx)\sum\frac y{x+y}&=2\sum \frac{xy^2+yz(x+y)}{x+y} \\
&=2\sum\frac{xy^2}{x+y}+2(xy+yz+zx) \\
&\leqslant \sum\sqrt{xy^3}+2(xy+yz+zx) \\
&\leqslant \frac13(x+y+z)^2+2(xy+yz+zx).
\end{align*}

16

Threads

25

Posts

321

Credits

Credits
321

Show all posts

 Author| dim Posted 2016-6-14 12:47
回复 2# 阿鲁


    懂了,谢谢!请问是否有不用Vasc不等式的解法?

2

Threads

17

Posts

133

Credits

Credits
133

Show all posts

阿鲁 Posted 2016-6-14 12:57
最后一步不用 Vace 改为用排序不等式得到的就是加强前的原不等式

16

Threads

25

Posts

321

Credits

Credits
321

Show all posts

 Author| dim Posted 2016-6-14 13:28
回复 4# 阿鲁


    可以再说详细点吗?

Mobile version|Discuz Math Forum

2025-5-31 11:22 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit