Forgot password?
 Register account
View 6095|Reply 21

[几何] 最小覆盖圆的问题

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2018-8-24 00:53 |Read mode
(1)已知三角形三边的长为3,4,5,分别以各边为直径作圆,求覆盖这三个圆的最小圆的半径。
(2)已知$\triangle ABC$中,$\angle C=90\du ,CB=a,CA=b,AB=c$,分别以各边为直径作圆,求覆盖这三个圆的最小圆的半径。
(3)给定任意一个$\triangle ABC$中,$CB=a,CA=b,AB=c$,分别以各边为直径作圆,求覆盖这三个圆的最小圆的半径。

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2018-8-24 15:04
Last edited by hbghlyj 2025-4-29 17:15回复 1# lemondian
第一问:
\[\left(x-\frac{24}{23}\right)^2+\left(y-\frac{36}{23}\right)^2=\left(\frac{72}{23}\right)^2\]
\begin{align*}
L_{a}:y&=-\frac{5}{12}x+2\\
\\
L_{b}:y&=-\frac{24}{7}x+\frac{36}{7}\\
\\
L_{c}:y&=\phantom{+}\frac{20}{21}x+\frac{4}{7}
\end{align*}


建立平面直角坐标系\(xOy\),点\(A(0,4)\),点\(B(3,0)\),点\(O_1(0,2)\),点\(O_2(\frac{3}{2},0)\),点\(O_3(\frac{3}{2},2)\);
以点\(O_1(0,2)\)为圆心作半径为\(2\)的圆\(\varGamma_1\colon x^2+(y-2)^2=4\),
以点\(O_2(\frac{3}{2},0)\)为圆心作半径为\(\frac{3}{2}\)的圆\(\varGamma_2\colon (x-\frac{3}{2})^2+y^2=\frac{9}{4}\),
以点\(O_3(\frac{3}{2},2)\)为圆心作半径为\(\frac{5}{2}\)的圆\(\varGamma_3\colon (x-\frac{3}{2})^2+(y-2)^2=\frac{25}{4}\);

引理:外切于两定圆的圆,其圆心轨迹为双曲线(的一部分)
这个引理2011年北约自主招生当大题考过,2015年洛阳模拟考过选择题

根据引理知:
动圆\(\varGamma_{1,3}\)既切于圆\(\varGamma_1\colon x^2+(y-2)^2=4\),又切于圆\(\varGamma_3\colon (x-\frac{3}{2})^2+(y-2)^2=\frac{25}{4}\),其圆心在双曲线\(C_1\colon \frac{(y-1)^2}{1/4}-\frac{(x-3/2)^2}{3/4}=1\)上;
动圆\(\varGamma_{2,3}\)既切于圆\(\varGamma_2\colon (x-\frac{3}{2})^2+y^2=\frac{9}{4}\),又切于圆\(\varGamma_3\colon (x-\frac{3}{2})^2+(y-2)^2=\frac{25}{4}\),其圆心在双曲线\(C_2\colon \frac{(x-3/4)^2}{1/16}-\frac{(y-2)^2}{1/2}=1\)上;
则三个圆\(\varGamma_1\),\(\varGamma_2\),\(\varGamma_3\)的公切圆在双曲线\(C_1\)与\(C_2\)的其中一个交点上。
通过计算可以找到三圆的外切公切圆\(\varGamma_{ABC}\)的圆心为\(O_{1,2,3}(\frac{24}{23},\frac{36}{23})\),半径为\(R_{1,2,3}=\frac{72}{23}\)。
与圆\(\varGamma_1\)的切点为\(P(-\frac{24}{13},\frac{36}{13})\);
与圆\(\varGamma_2\)的切点为\(Q(\frac{48}{25},-\frac{36}{25})\);
与圆\(\varGamma_3\)的切点为\(R(\frac{96}{29},\frac{108}{29})\);

附:
\[ \left(-\frac{864}{299}\right)^2+\left(\frac{360}{299}\right)^2=\left(\frac{72}{23}\right)^2\Longleftrightarrow\left(-\frac{12}{13}\right)^2+\left(\frac{5}{13}\right)^2=1 \]
\[ \left(\frac{504}{575}\right)^2+\left(-\frac{1728}{575}\right)^2=\left(\frac{72}{23}\right)^2\Longleftrightarrow\left(\frac{7}{25}\right)^2+\left(-\frac{24}{25}\right)^2=1 \]
\[ \left(\frac{1512}{667}\right)^2+\left(\frac{1440}{667}\right)^2=\left(\frac{72}{23}\right)^2\Longleftrightarrow\left(\frac{21}{29}\right)^2+\left(\frac{20}{29}\right)^2=1 \]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2018-8-24 23:18
回复 2# 青青子衿

谢谢!提供一个不错的方法!
就是计算量有点大了。
另外:引理:外切于两定圆的圆,其圆心轨迹为双曲线(的一部分)
这里是不是内切呢?

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2018-8-24 23:25
Last edited by 青青子衿 2018-8-24 23:52回复 3# lemondian
首先,你要理解清楚对象是谁……
三个定圆内切于公切圆,公切圆外切于三个定圆,
所以称“动圆”为外切于两个定圆的圆

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2019-8-5 20:20
已知AB,BC,CD,DE,EF,FA,AD,BE,CF的长,求AC,AE的长.

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2019-8-9 09:27
回复 6# hbghlyj
那个行列式与四面体 $ABCP$ 的体积有关,体积为 0 就是共面时的情形。点在形内形外计算下重心坐标,有了点到三顶点的距离就能确定重心坐标了。

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2020-4-18 12:09
Last edited by 青青子衿 2020-4-18 12:16\begin{gather*}
&\color{black}{\begin{split}
&\left|AB\right|=a&\qquad&\left|CD\right|=c&\qquad&\left|AC\right|=e\\
&\left|BC\right|=b&\qquad&\left|DA\right|=d&\qquad&\left|BD\right|=f
\end{split}}\\
\\
&\color{black}{\left\{\begin{split}  
p=&(a^2 - b^2) (c^2 - d^2) + (a^2 + b^2 + c^2 + d^2) e^2 - e^4\\
\\  
q=&(a^2 c^2 - b^2 d^2) (a^2 + c^2 - b^2 - d^2) + (a^2 - d^2) (b^2 - c^2) e^2\\  
\end{split}\right.}\\
\\
&\color{black}{\Large{e^2 f^4 -pf^2 +q=0}}
\end{gather*}

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2018-8-24 23:28
回复 4# lemondian
有是有简单方法,微信上看到的
王扬最小覆盖圆问题与解答

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2019-8-9 09:56
另外,那个行列式是五阶行列式,实际计算是相当麻烦的,还不如记住另一种形式:

\begin{align*}
p_1&=(AB\cdot CP)^2\cdot(-AB^2+AC^2+BC^2+AP^2+BP^2-CP^2)\\
p_2&=(AC\cdot BP)^2\cdot(AB^2-AC^2+BC^2+AP^2-BP^2+CP^2)\\
p_3&=(BC\cdot AP)^2\cdot(AB^2+AC^2-BC^2-AP^2+BP^2+CP^2)\\
p&=(AB\cdot AC\cdot BC)^2+(AB\cdot AP\cdot BP)^2+(AC\cdot AP\cdot CP)^2+(BC\cdot BP\cdot CP)^2
\end{align*}
则四面体 $ABCP$ 的体积 $V$ 为
\[
V=\frac{\sqrt{p_1+p_2+p_3-p}}{12}
\]
行列式的值就等于 $2(p_1+p_2+p_3-p)$。

上面的 $p_1$、$p_2$、$p_3$、$p$ 是很好记的。$p_1$、$p_2$、$p_3$ 中前面的因式 $AB$ 和 $CP$、$AC$ 和 $BP$、$BC$ 和 $AP$ 分别是三组对棱,后面的因式是 $AB^2$、$AC^2$、$BC^2$、$AP^2$、$BP^2$、$CP^2$ 的代数和,跟前面因式的线段相同的取 $-$,其余取 $+$。$p$ 中(1)$AB$、$AC$、$BC$(2)$AB$、$AP$、$BP$(3)$AC$、$AP$、$CP$(4)$BC$、$BP$、$CP$ 分别是四面体 $ABCP$ 四面的三角形各边长。

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2018-8-25 23:30
回复 6# 青青子衿

哦,这个也不错。建标时不常规。。。

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2018-8-27 13:34
Last edited by 青青子衿 2018-8-28 14:06回复 4# lemondian
另外:期待有没有更简洁的方法,和其它两个问题的解答。
lemondian 发表于 2018-8-24 23:21
第二问:
其中有\(\color{red}{a^2+b^2=c^2}\)
\[\left(x-\frac{\left(\frac{c-a}{b}\right)\left(a+b-c\right)}{1-\left(\frac{c-a}{b}\right)^2-\left(\frac{c-b}{a}\right)^2}\right)^2+\left(y-\frac{\left(\frac{c-b}{a}\right)\left(a+b-c\right)}{1-\left(\frac{c-a}{b}\right)^2-\left(\frac{c-b}{a}\right)^2}\right)^2=\left(\frac{a+b-c}{1-\left(\frac{c-a}{b}\right)^2-\left(\frac{c-b}{a}\right)^2}\right)^2\]
\begin{align*}
L_{a}:y&={\color{red}{-}}\,\frac{\left(c-a\right)\left(c-b\right)\left(2a+c-b\right)}{2ab\left(a+b-c\right)}x+\frac{a}{2}\\
\\
L_{b}:y&={\color{red}{-}}\,\frac{2ab\left(a+b-c\right)}{\left(c-a\right)\left(c-b\right)\left(2b+c-a\right)}\left(x-\frac{b}{2}\right)\\
\\
L_{c}:y&=\phantom{+}\frac{a\left(c-a\right)\left(2a+c-b\right)}{b\left(c-b\right)\left(2b+c-a\right)}x+\frac{a\left(a-b\right)\left(a+b-c\right)}{\left(c-b\right)\left(2b+c-a\right)}
\end{align*}
建立平面直角坐标系\(xOy\),点\(A(0,a)\),点\(B(b,0)\),点\(O_1(0,\frac{a}{2})\),点\(O_2(\frac{b}{2},0)\),点\(O_3(\frac{b}{2},\frac{a}{2})\);
以点\(O_1(0,\frac{a}{2})\)为圆心作半径为\(\frac{a}{2}\)的圆\(\varGamma_1\colon x^2+(y-\frac{a}{2})^2=\left(\frac{a}{2}\right)^2\),
以点\(O_2(\frac{b}{2},0)\)为圆心作半径为\(\frac{b}{2}\)的圆\(\varGamma_2\colon (x-\frac{b}{2})^2+y^2=\left(\frac{b}{2}\right)^2\),
以点\(O_3(\frac{b}{2},\frac{a}{2})\)为圆心作半径为\(\frac{c}{2}\)的圆\(\varGamma_3\colon (x-\frac{b}{2})^2+(y-\frac{a}{2})^2=\left(\frac{c}{2}\right)^2\);

三圆的外切公切圆\(\varGamma_{ABC}\)的圆心为\(\displaystyle O_{1,2,3}\left(\frac{\left(\frac{c-a}{b}\right)\left(a+b-c\right)}{1-\left(\frac{c-a}{b}\right)^2-\left(\frac{c-b}{a}\right)^2},\frac{\left(\frac{c-b}{a}\right)\left(a+b-c\right)}{1-\left(\frac{c-a}{b}\right)^2-\left(\frac{c-b}{a}\right)^2}\right)\),半径为\(\displaystyle R_{1,2,3}=\frac{a+b-c}{1-\left(\frac{c-a}{b}\right)^2-\left(\frac{c-b}{a}\right)^2}\)

与圆\(\varGamma_1\)的切点为\(\displaystyle P\left(-\frac{a^2b\left(a+b-c\right)}{\left(c-a\right)\left(c-b\right)\left(2a+b+3c\right)},\frac{2a\left(a+c\right)}{2a+b+3c}\right)\);
与圆\(\varGamma_2\)的切点为\(\displaystyle Q\left(\frac{2b\left(b+c\right)}{a+2b+3c},-\frac{ab^2\left(a+b-c\right)}{\left(c-a\right)\left(c-b\right)\left(a+2b+3c\right)}\right)\);
与圆\(\varGamma_3\)的切点为\(\displaystyle R\left(\frac{b\left(b+c\right)\left(b+c-a\right)}{\left(c-a\right)\left(2a+2b+3c\right)},\frac{a\left(a+c\right)\left(a+c-b\right)}{\left(c-b\right)\left(2a+2b+3c\right)}\right)\);

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2018-8-27 18:45
Last edited by 青青子衿 2018-8-28 14:46回复 4# lemondian
另外:期待有没有更简洁的方法,和其它两个问题的解答。
lemondian 发表于 2018-8-24 23:21
第三问的一个例子:
\[ \left(x-\frac{9\left(549-200\sqrt{3}\right)}{3346}\right)^2+\left(y-\frac{30\left(17+43\sqrt{3}\right)}{1673}\right)^2=\left(\frac{10\left(73+30\sqrt{3}\right)}{239}\right)^2 \]
\begin{align*}  
L_{a}:y&=\phantom{+}\frac{20\left(147+113\sqrt{3}\right)}{2277}x\\  
\\  
L_{b}:y&=-\frac{5\left(147+305\sqrt{3}\right)}{3652}x+\frac{105\left(89\sqrt{3}-5\right)}{7304}\\  
\\  
L_{c}:y&=\phantom{+}\frac{4\left(118\sqrt{3}-147\right)}{715}x+\frac{42\left(4-\sqrt{3}\right)}{65}
\end{align*}
【2018年8月28日补充】
建立平面直角坐标系\(xOy\),点\(A(\frac{39}{14},\frac{20\sqrt{3}}{7})\),点\(B(-\,\frac{7}{2},0)\),点\(C(\,\frac{7}{2},0)\),点\(O_1(0,0)\),点\(O_2(-\frac{5}{14},\frac{10\sqrt{3}}{7})\),点\(O_3(\frac{44}{7},\frac{10\sqrt{3}}{7})\);
以点\(O_1(0,0)\)为圆心作半径为\(\frac{7}{2}\)的圆\(\varGamma_1\colon x^2+y^2=\left(\frac{7}{2}\right)^2\),
以点\(O_2(-\frac{5}{14},\frac{10\sqrt{3}}{7})\)为圆心作半径为\(4\)的圆\(\varGamma_2\colon (x+\frac{5}{14})^2+(y-\frac{10\sqrt{3}}{7})^2=4^2\),
以点\(O_3(\frac{22}{7},\frac{10\sqrt{3}}{7})\)为圆心作半径为\(\frac{5}{2}\)的圆\(\varGamma_3\colon (x-\frac{22}{7})^2+(y-\frac{10\sqrt{3}}{7})^2=\left(\frac{5}{2}\right)^2\);

三圆的外切公切圆\(\varGamma_{ABC}\)的圆心为\(\displaystyle O_{1,2,3}\left(\frac{9\left(549-200\sqrt{3}\right)}{3346},\frac{30\left(17+43\sqrt{3}\right)}{1673}\right)\),半径为\(\displaystyle R_{1,2,3}=\frac{10\left(73+30\sqrt{3}\right)}{239}\)

与圆\(\varGamma_1\)的切点为\(\displaystyle P\left(\frac{3\left(339-400\sqrt{3}\right)}{962},-\frac{10\left(113+27\sqrt{3}\right)}{481}\right)\);
与圆\(\varGamma_2\)的切点为\(\displaystyle Q\left(-\frac{169+6000\sqrt{3}}{3206},\frac{10\left(366+269\sqrt{3}\right)}{1603}\right)\);
与圆\(\varGamma_3\)的切点为\(\displaystyle R\left(\frac{8911+2400\sqrt{3}}{2366},\frac{10\left(177+119\sqrt{3}\right)}{1183}\right)\);

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2018-8-27 19:09
回复 9# 青青子衿


    第三问三角形边长是了什么值呢?

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2018-8-27 19:11
回复 8# 青青子衿

方法还是第一问的做法吗?

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2018-8-28 10:30

\begin{align*}
t={}&{-}5\left(a^4+b^4+c^4\right)+2\left(a^2b^2+a^2c^2+b^2c^2\right)\\
&{}+4\left(ab\left(a^2+b^2\right)+ac\left(a^2+c^2\right)+bc\left(b^2+c^2\right)-abc(a+b+c)\right)\\
u={}&3\left(a^5+b^5+c^5\right)-\left(ab\left(a^3+b^3\right)+ac\left(a^3+c^3\right)+bc\left(b^3+c^3\right)\right)\\
&{}-2\left(a^2b^2(a+b)+a^2c^2(a+c)+b^2c^2(b+c)-abc(ab+ac+bc)\right)
\end{align*}
所求的这个半径是方程
\[
2tr^2+2ur+\left(-a^2+b^2+c^2\right)\left(a^2-b^2+c^2\right)\left(a^2+b^2-c^2\right)=0
\]
的最大根。

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2018-8-28 11:09
回复 12# hejoseph


    能.写清楚由来吗?过程等

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2018-8-28 13:57
Last edited by 青青子衿 2018-8-28 14:04回复 10# lemondian
回复  青青子衿
    第三问三角形边长是了什么值呢?
lemondian 发表于 2018-8-27 19:09
其实你可以尝试算一算的
也很好算,那个例子中三角形的那三条边都是整数(提示你有一个角是60度哟)
不过实在不想算的话,我待会在9楼帖子补上

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2018-8-28 15:11
Last edited by 青青子衿 2018-8-28 15:56回复 13# lemondian
回复  hejoseph
    能.写清楚由来吗?过程等
lemondian 发表于 2018-8-28 11:09
利用凯莱-门格行列式(Cayley–Menger Determinants)
\[\begin{vmatrix}  
0 & \left(R-\frac{a}{2}\right)^2 & \left(R-\frac{b}{2}\right)^2 & \left(R-\frac{c}{2}\right)^2 & 1 \\   
\left(R-\frac{a}{2}\right)^2 & 0 & \left(\frac{c}{2}\right)^2 & \left(\frac{b}{2}\right)^2 & 1 \\   
\left(R-\frac{b}{2}\right)^2 & \left(\frac{c}{2}\right)^2 & 0 & \left(\frac{a}{2}\right)^2 & 1 \\   
\left(R-\frac{c}{2}\right)^2 & \left(\frac{b}{2}\right)^2 & \left(\frac{a}{2}\right)^2 & 0 & 1 \\   
1 & 1 & 1 & 1 & 0   
\end{vmatrix}=UR^2+VR+W=0\]
\[
\left\{\begin{align*}
U=&\,3(a+b+c)^2(ab+ac+bc)-2(ab+ac+bc)^2\\
&-\frac{5}{8}(a+b+c)^4-4abc(a+b+c)\\
\\
V=&\,\frac{3}{8}(a+b+c)^5+\frac{5}{2}abc(a+b+c)^2+2(a+b+c)(ab+ac+bc)^2\\
&-2(a+b+c)^3(ab+ac+bc)-2abc(ab+ac+bc)\\
\\
W=&\,\frac{3}{8}(a+b+c)^4(ab+ac+bc)+abc(a+b+c)(ab+ac+bc)\\
&-\frac{1}{16}(a+b+c)^6-\frac{1}{2}abc(a+b+c)^3-\frac{1}{2}(a+b+c)^2(ab+ac+bc)^2-\frac{1}{2}a^2b^2c^2\\
\end{align*}\right.\]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2018-8-30 20:58
回复 15# 青青子衿

玩得这么深,难解呀!,都是大神!

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2019-7-5 08:21
今天又看看这个题:
还是不明白:
(1)2#,8#的三条直线如何得出来的?
(2)圆心是如何算出来的?

Mobile version|Discuz Math Forum

2025-5-31 11:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit