|
青青子衿
Posted 2018-8-24 15:04
Last edited by hbghlyj 2025-4-29 17:15回复 1# lemondian
第一问:
\[\left(x-\frac{24}{23}\right)^2+\left(y-\frac{36}{23}\right)^2=\left(\frac{72}{23}\right)^2\]
\begin{align*}
L_{a}:y&=-\frac{5}{12}x+2\\
\\
L_{b}:y&=-\frac{24}{7}x+\frac{36}{7}\\
\\
L_{c}:y&=\phantom{+}\frac{20}{21}x+\frac{4}{7}
\end{align*}
建立平面直角坐标系\(xOy\),点\(A(0,4)\),点\(B(3,0)\),点\(O_1(0,2)\),点\(O_2(\frac{3}{2},0)\),点\(O_3(\frac{3}{2},2)\);
以点\(O_1(0,2)\)为圆心作半径为\(2\)的圆\(\varGamma_1\colon x^2+(y-2)^2=4\),
以点\(O_2(\frac{3}{2},0)\)为圆心作半径为\(\frac{3}{2}\)的圆\(\varGamma_2\colon (x-\frac{3}{2})^2+y^2=\frac{9}{4}\),
以点\(O_3(\frac{3}{2},2)\)为圆心作半径为\(\frac{5}{2}\)的圆\(\varGamma_3\colon (x-\frac{3}{2})^2+(y-2)^2=\frac{25}{4}\);
引理:外切于两定圆的圆,其圆心轨迹为双曲线(的一部分)
这个引理2011年北约自主招生当大题考过,2015年洛阳模拟考过选择题
根据引理知:
动圆\(\varGamma_{1,3}\)既切于圆\(\varGamma_1\colon x^2+(y-2)^2=4\),又切于圆\(\varGamma_3\colon (x-\frac{3}{2})^2+(y-2)^2=\frac{25}{4}\),其圆心在双曲线\(C_1\colon \frac{(y-1)^2}{1/4}-\frac{(x-3/2)^2}{3/4}=1\)上;
动圆\(\varGamma_{2,3}\)既切于圆\(\varGamma_2\colon (x-\frac{3}{2})^2+y^2=\frac{9}{4}\),又切于圆\(\varGamma_3\colon (x-\frac{3}{2})^2+(y-2)^2=\frac{25}{4}\),其圆心在双曲线\(C_2\colon \frac{(x-3/4)^2}{1/16}-\frac{(y-2)^2}{1/2}=1\)上;
则三个圆\(\varGamma_1\),\(\varGamma_2\),\(\varGamma_3\)的公切圆在双曲线\(C_1\)与\(C_2\)的其中一个交点上。
通过计算可以找到三圆的外切公切圆\(\varGamma_{ABC}\)的圆心为\(O_{1,2,3}(\frac{24}{23},\frac{36}{23})\),半径为\(R_{1,2,3}=\frac{72}{23}\)。
与圆\(\varGamma_1\)的切点为\(P(-\frac{24}{13},\frac{36}{13})\);
与圆\(\varGamma_2\)的切点为\(Q(\frac{48}{25},-\frac{36}{25})\);
与圆\(\varGamma_3\)的切点为\(R(\frac{96}{29},\frac{108}{29})\);
附:
\[ \left(-\frac{864}{299}\right)^2+\left(\frac{360}{299}\right)^2=\left(\frac{72}{23}\right)^2\Longleftrightarrow\left(-\frac{12}{13}\right)^2+\left(\frac{5}{13}\right)^2=1 \]
\[ \left(\frac{504}{575}\right)^2+\left(-\frac{1728}{575}\right)^2=\left(\frac{72}{23}\right)^2\Longleftrightarrow\left(\frac{7}{25}\right)^2+\left(-\frac{24}{25}\right)^2=1 \]
\[ \left(\frac{1512}{667}\right)^2+\left(\frac{1440}{667}\right)^2=\left(\frac{72}{23}\right)^2\Longleftrightarrow\left(\frac{21}{29}\right)^2+\left(\frac{20}{29}\right)^2=1 \] |
|