Forgot password?
 Register account
View 1137|Reply 4

是否存在矩阵$A_{m×n}$与$B_{n×m}$使得$AB=E_m$且$BA=E_n$?

[Copy link]

9

Threads

17

Posts

134

Credits

Credits
134

Show all posts

大一新生 Posted 2018-10-8 17:49 |Read mode
是否存在矩阵$A_{m×n}$与$B_{n×m}$使得$AB=E_m$且$BA=E_n$?

2

Threads

4

Posts

48

Credits

Credits
48

Show all posts

热爱生命 Posted 2018-10-8 17:59
当$m\neq n$时一定不存在,因为$\mathrm{tr}\,(\bm{AB})=\mathrm{tr}\,(\bm{BA})$,而$\mathrm{tr}\,(\bm{E}_m)\neq\mathrm{tr}\,(\bm{E_n})$。

9

Threads

17

Posts

134

Credits

Credits
134

Show all posts

 Author| 大一新生 Posted 2018-10-8 19:43
回复 2# 热爱生命
感谢!

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2018-10-10 23:01
Last edited by 战巡 2018-10-10 23:07回复 1# 大一新生

你原版问题中的那种矩阵不一定存在,但下面这个一定存在

可以证明对任意$m\times n$矩阵$A$,存在矩阵$B_{n\times m}$使得$B$满足以下4个条件:
1、$ABA=A$
2、$BAB=B$
3、$(AB)^T=AB$
4、$(BA)^T=BA$
满足条件的这个$B$称为$A$的摩尔-彭若斯广义逆阵(Moore–Penrose pseudoinverse),一般记作$A^+$,对任意矩阵$A$都存在且唯一,当$A$为方阵且非奇异时$A^+=A^{-1}$

2

Threads

15

Posts

191

Credits

Credits
191

Show all posts

orzweb111 Posted 2019-3-24 08:10
回复 2# 热爱生命
The most slick answer ever, bravo.

Mobile version|Discuz Math Forum

2025-6-5 07:43 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit