Forgot password?
 Create new account
View 959|Reply 3

更复杂且有对数与根式的二重瑕积分

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2019-2-2 13:03:12 |Read mode
【2月2日】
\[\color{black}{\int_0^1\!\int_0^1\frac{\ln\left(x^{\color{red}2}+y^{\color{red}2}\right)}{\sqrt{x+y\,\,}}{\rm\,d}x\!{\rm\,d}y}\]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

 Author| 青青子衿 Posted at 2019-2-2 13:14:55
【2月2日】
\[\color{black}{\int_0^1\!\int_0^1\frac{\ln\left(x^{\color{red}2}+y^{\color{red}2}\right)}{\sqrt{x+y\,\,}}{\rm\,d}x\!{\rm\,d}y}\]
青青子衿 发表于 2019-2-2 13:03

\begin{align*}
\color{black}{
-\frac{128\left(\sqrt{2}-1\right)}{9}+\frac{8\sqrt{2}}{3}\ln2+\frac{16\sqrt{2\left(\sqrt{2}-1\right)}}{3}\arctan\left(\sqrt{\frac{\sqrt{2}-1}{2}}\,\right)
}
\end{align*}

47

Threads

358

Posts

3014

Credits

Credits
3014

Show all posts

业余的业余 Posted at 2019-2-4 01:33:31
回复 2# 青青子衿

求过程。

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

 Author| 青青子衿 Posted at 2019-11-28 14:30:50

手机版Mobile version|Leisure Math Forum

2025-4-20 22:31 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list