Forgot password?
 Register account
View 1090|Reply 3

更复杂且有对数与根式的二重瑕积分

[Copy link]

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

青青子衿 Posted 2019-2-2 13:03 |Read mode
【2月2日】
\[\color{black}{\int_0^1\!\int_0^1\frac{\ln\left(x^{\color{red}2}+y^{\color{red}2}\right)}{\sqrt{x+y\,\,}}{\rm\,d}x\!{\rm\,d}y}\]

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

 Author| 青青子衿 Posted 2019-2-2 13:14
【2月2日】
\[\color{black}{\int_0^1\!\int_0^1\frac{\ln\left(x^{\color{red}2}+y^{\color{red}2}\right)}{\sqrt{x+y\,\,}}{\rm\,d}x\!{\rm\,d}y}\]
青青子衿 发表于 2019-2-2 13:03
\begin{align*}
\color{black}{
-\frac{128\left(\sqrt{2}-1\right)}{9}+\frac{8\sqrt{2}}{3}\ln2+\frac{16\sqrt{2\left(\sqrt{2}-1\right)}}{3}\arctan\left(\sqrt{\frac{\sqrt{2}-1}{2}}\,\right)
}
\end{align*}

46

Threads

323

Posts

2834

Credits

Credits
2834

Show all posts

业余的业余 Posted 2019-2-4 01:33
回复 2# 青青子衿

求过程。

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

 Author| 青青子衿 Posted 2019-11-28 14:30

Mobile version|Discuz Math Forum

2025-6-5 01:58 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit