Forgot password
 Register account
View 1096|Reply 3

更复杂且有对数与根式的二重瑕积分

[Copy link]

461

Threads

959

Posts

4

Reputation

Show all posts

青青子衿 posted 2019-2-2 13:03 |Read mode
【2月2日】
\[\color{black}{\int_0^1\!\int_0^1\frac{\ln\left(x^{\color{red}2}+y^{\color{red}2}\right)}{\sqrt{x+y\,\,}}{\rm\,d}x\!{\rm\,d}y}\]

461

Threads

959

Posts

4

Reputation

Show all posts

original poster 青青子衿 posted 2019-2-2 13:14
【2月2日】
\[\color{black}{\int_0^1\!\int_0^1\frac{\ln\left(x^{\color{red}2}+y^{\color{red}2}\right)}{\sqrt{x+y\,\,}}{\rm\,d}x\!{\rm\,d}y}\]
青青子衿 发表于 2019-2-2 13:03
\begin{align*}
\color{black}{
-\frac{128\left(\sqrt{2}-1\right)}{9}+\frac{8\sqrt{2}}{3}\ln2+\frac{16\sqrt{2\left(\sqrt{2}-1\right)}}{3}\arctan\left(\sqrt{\frac{\sqrt{2}-1}{2}}\,\right)
}
\end{align*}
业余的业余 posted 2019-2-4 01:33
回复 2# 青青子衿

求过程。

461

Threads

959

Posts

4

Reputation

Show all posts

original poster 青青子衿 posted 2019-11-28 14:30

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 06:09 GMT+8

Powered by Discuz!

Processed in 0.014706 seconds, 32 queries