Forgot password?
 Create new account
View 1058|Reply 3

两道特殊的三对角行列式

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2019-4-23 20:27:53 |Read mode
三对角行列式为\(D_{a,n}(x)\)
\[D_{a,n}(x)=\left|\begin{array}{ccccccc}
x&1&&&&&\\
n-1&x&2&&&&\\
&n-2&x& \ddots &&&\\
&& \ddots & \ddots & \ddots && \\
&&& \ddots &x&n-2&\\
&&&&2&x&n-1\\
&&&&&1&x
\end{array}\right|\]
三对角行列式为\(D_{b,n}(x)\)
\[D_{b,n}(x)=\left|\begin{array}{ccccccc}
x&1&&&&&\\
-(n-1)&x&2&&&&\\
&-(n-2)&x& \ddots &&&\\
&& \ddots & \ddots & \ddots && \\
&&& \ddots &x&n-2&\\
&&&&-2&x&n-1\\
&&&&&-1&x
\end{array}\right|\]
\begin{gather*}
&D_{a,n}(x)&=&\begin{cases}
(x^2-1^2)\cdots\left(x^2-(n-3)^2\right)\left(x^2-(n-1)^2\right)&n= 0\pmod2\\
x(x^2-2^2)\cdots\left(x^2-(n-3)^2\right)\left(x^2-(n-1)^2\right)& n= 1\pmod2 \end{cases}\\
\,\\
&D_{b,n}(x)&=&\begin{cases}
(x^2+1^2)\cdots\left(x^2+(n-3)^2\right)\left(x^2+(n-1)^2\right)&n= 0\pmod2\\
x(x^2+2^2)\cdots\left(x^2+(n-3)^2\right)\left(x^2+(n-1)^2\right)& n= 1\pmod2 \end{cases}\\
\end{gather*}

2

Threads

18

Posts

206

Credits

Credits
206

Show all posts

orzweb111 Posted at 2019-4-24 00:39:00
The entry $x$ in the diagonal doesn't play much role, so one usually igores it.  $D_{a,n}(0)$ is usually known as a Matrix of Mark Kac in the literature.

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

 Author| 青青子衿 Posted at 2019-4-24 13:21:41
Last edited by 青青子衿 at 2019-4-24 14:30:00
The entry $x$ in the diagonal doesn't play much role, so one usually igores it.  $D_{a,n}(0)$ is usually known as a Matrix of Mark Kac in the literature. ...
orzweb111 发表于 2019-4-24 00:39

谢谢!找到一篇相关文章了。
Another look at a matrix of Mark Kac
Olga Taussky, JohnTodd
Linear Algebra and its Applications
Volume 150, May 1991, Pages 341-360

实际上,可以将\(\,D_{a,n}({\color{red}-}\lambda)\,\)看作是Mark Kac矩阵\(\,\boldsymbol{A}_{n}\,\)的特征多项式
\(\,\left|\boldsymbol{A}_n-\lambda\boldsymbol{E}\right|=D_{a,n}({\color{red}-}\lambda)\,\)

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2024-9-4 18:29:19
该帖子已被页面一个特殊的三对角形行列式求解引用

手机版Mobile version|Leisure Math Forum

2025-4-20 22:11 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list