Forgot password?
 Register account
View 1838|Reply 10

[不等式] 高三理科模考试卷 3a+b=14

[Copy link]

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2019-5-28 17:16 |Read mode
若a,b>0,且3a+b=14,求证:$\frac{a^2}{a+2b}+\frac{b^2}{b+2}≥3。$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-5-28 18:27
先猜取等,再凑不等式啊……说过好多次的心法了,还不能领会吗?

很容易发现 a=4,b=2 时取等,于是
\begin{align*}
\frac {a^2}{a+2b}+\frac {a+2b}4&\geqslant a\\
\frac {b^2}{b+2}+\frac {b+2}4&\geqslant b
\end{align*}相加就完了啊

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2019-5-28 19:18
哦,原来之前就扯过了,一大堆,见:forum.php?mod=viewthread&tid=5313

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

 Author| 走走看看 Posted 2019-5-28 20:44
回复 3# kuing


    还真是的,谢谢啊!

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2019-5-28 22:11
$ x,y,z∈R^+,x+y+z=6 $,则$ x+\sqrt{xy}+\sqrt[3]{xyz} $的最大值_______。类似的一个。

0

Threads

413

Posts

6098

Credits

Credits
6098
QQ

Show all posts

爪机专用 Posted 2019-5-28 22:20
回复 5# 敬畏数学

见:forum.php?mod=viewthread&tid=4064

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2019-5-28 22:29
这个等号成立难观察了,只能猜系数。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2019-5-28 22:32
回复 3# kuing


模拟卷上的不等式?我碰到的为什么基本均可以用均值,或者柯西不等式。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2019-5-28 23:28
回复 1# 走走看看
除了均值不等式的方法,怎么能忘了柯西不等式呢

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2019-5-28 23:56
回复 9# 其妙


    写来学习下,,,,,

209

Threads

950

Posts

6222

Credits

Credits
6222

Show all posts

敬畏数学 Posted 2019-5-29 07:35
Last edited by 敬畏数学 2019-5-29 07:44先柯西再齐次化,不难。$ \frac{a^2}{a+2b}+\frac{b^2}{b+2}\geqslant \frac{(a+b)^2}{a+3b+2}=\frac{(a+b)^2}{(a+3b+\frac{3a+b}{7})\frac{3a+b}{14}}=\frac{98(a^2+2ab+b^2)}{30a^2+76ab+22b^2}=\frac{98(1+2\frac{b}{a}+(\frac{b}{a})^2)}{30+76\frac{b}{a}+22(\frac{b}{a})^2}$,设$ \frac{b}{a}=x,f(x)=\frac{x^2+2x+1}{22x^2+76x+30},x∈R^+ $,$ f(x)_{min}=f(\frac{1}{2})=\frac{3}{98} $,即$ \frac{a^2}{a+2b}+\frac{b^2}{b+2}\geqslant 3 $。或者柯西后再均值不等式处理那个分式,期待高手。。。。,感觉可以。

Mobile version|Discuz Math Forum

2025-5-31 10:32 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit