Forgot password?
 Register account
View 2596|Reply 7

[不等式] 求$\frac{x+\sqrt{xy}+\sqrt[3]{xyz}}{x+y+z}$最大值

[Copy link]

16

Threads

25

Posts

321

Credits

Credits
321

Show all posts

dim Posted 2016-5-30 02:25 |Read mode
Last edited by hbghlyj 2025-5-16 22:46$x, y, z>0$,证明 $\frac{x+\sqrt{x y}+\sqrt[3]{x y z}}{x+y+z}$ 的最大值为 $\frac{4}{3}$.进一步,如何求 $\frac{\sum_{k=1}^n \sqrt[k]{x_1 x_2 \cdots x_k}}{\sum_{k=1}^n x_k}$ 的最大值

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2016-5-30 09:45
Last edited by hbghlyj 2025-5-16 22:48\begin{aligned}
& \frac{x_1+\sqrt{x_1 x_2}+\sqrt[3]{x_1 x_2 x_3}+\cdots+\sqrt[n]{x_1 x_2 \cdots x_n}}{x_1+x_2+\cdots+x_n} \\
& \leq \frac{x_1+\frac{a_1 x_1+a_2 x_2}{2 \sqrt{a_1 a_2}}+\frac{a_1 x_1+a_2 x_2+a_3 x_3}{3 \sqrt[3]{a_1 a_2 a_3}}+\cdots+\frac{a_1 x_1+a_2 x_2+\cdots+a_n x_n}{x_1+x_2+\cdots+x_n}}{x_1+x_2+\dots+x_n} \\&a_1 x_1= a_2 x_2=\cdots=a_n x_n\\
& 1+\frac{a_1}{2 \sqrt{a_1 a_2}}+\frac{a_1}{3 \sqrt[3]{a_1 a_2 a_3}}+\cdots+\frac{a_1}{n \sqrt[n]{a_1 a_2 \cdots a_n}} \\
& =\frac{a_2}{2 \sqrt{a_1 a_2}}+\frac{a_2}{3 \sqrt[3]{a_1 a_2 a_3}}+\cdots+\frac{a_2}{n \sqrt[n]{a_1 a_2 \cdots a_n}} \\
& =\frac{a_3}{3 \sqrt[3]{a_1 a_2 a_3}}+\cdots+\frac{a_3}{n \sqrt[n]{a_1 a_2 \cdots a_n}}=\cdots=\frac{a_n}{n \sqrt[n]{a_1 a_2 \cdots a_n}}
\end{aligned}三个数的时候,取 $a_3=4 a_2=16 a_1$.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-5-30 11:57
嗯,也就三元能玩,四元或以上如无意外涉及高次方程

16

Threads

25

Posts

321

Credits

Credits
321

Show all posts

 Author| dim Posted 2016-5-30 12:28
回复 2# 游客


    谢谢!我还想知道你是怎么求解这个方程组的?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2016-5-30 14:49
也来一种方法:

先看三元的,待定正数 $m$,使得
\begin{align*}
m(x+y+z)&=x+(m-1)x+my+mz \\
&\geqslant x+2\sqrt{(m-1)x\cdot my}+mz \\
&=x+\sqrt{xy}+2\cdot \frac12\bigl(2\sqrt{(m-1)m}-1\bigr)\sqrt{xy}+mz \\
&\geqslant x+\sqrt{xy}+3\sqrt[3]{\frac1{2^2}\bigl(2\sqrt{(m-1)m}-1\bigr)^2xy\cdot mz}
\end{align*}
要能用均值,得满足 $m>1$, $2\sqrt{(m-1)m}>1$,然后自然是要令
\[3\sqrt[3]{\frac1{2^2}\bigl(2\sqrt{(m-1)m}-1\bigr)^2m}=1,\]
解之得出 $m=4/3$,取等条件 $(m-1)x=my$ 且 $\bigl(2\sqrt{(m-1)m}-1\bigr)\sqrt{xy}=2mz$,有非零解,所以 $4/3$ 就是最佳系数。


再来试四元,承接上面,有
\begin{align*}
m(x+y+z+w)&\geqslant x+\sqrt{xy}+3\sqrt[3]{\frac1{2^2}\bigl(2\sqrt{(m-1)m}-1\bigr)^2xy\cdot mz}+mw\\
&=x+\sqrt{xy}+\sqrt[3]{xyz}+3\cdot \frac13\left( 3\sqrt[3]{\frac1{2^2}\bigl(2\sqrt{(m-1)m}-1\bigr)^2m}-1 \right)\sqrt[3]{xyz}+mw\\
&\geqslant x+\sqrt{xy}+\sqrt[3]{xyz}+4\sqrt[4]{\frac1{3^3}\left( 3\sqrt[3]{\frac1{2^2}\bigl(2\sqrt{(m-1)m}-1\bigr)^2m}-1 \right)^3xyz\cdot mw},
\end{align*}
需要 $m>1$, $2\sqrt{(m-1)m}>1$, $3\sqrt[3]{\frac1{2^2}\bigl(2\sqrt{(m-1)m}-1\bigr)^2m}>1$,然后令
\[4\sqrt[4]{\frac1{3^3}\left( 3\sqrt[3]{\frac1{2^2}\bigl(2\sqrt{(m-1)m}-1\bigr)^2m}-1 \right)^3m}=1,\]
解出来的就是最佳系数,然而解不出精确解来,其数值解约为 $1.420844$。

五元,最后要解的就是
\[5\sqrt[5]{\frac1{4^4}\left( 4\sqrt[4]{\frac1{3^3}\left( 3\sqrt[3]{\frac1{2^2}\bigl(2\sqrt{(m-1)m}-1\bigr)^2m}-1 \right)^3m}-1 \right)^4m}=1,\]
解的近似值约 $1.486$。

方程的规律很清楚,然并卵……

16

Threads

25

Posts

321

Credits

Credits
321

Show all posts

 Author| dim Posted 2016-5-30 15:03
回复 5# kuing


    这个证法好厉害,避免了求解方程组,让人眼前一亮!谢谢大神!

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted 2016-5-30 16:39
未命名.PNG

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2018-7-21 11:27
一个不等式arqady的证明
blog.sina.com.cn/s/blog_4c1131020101ani1.html

Mobile version|Discuz Math Forum

2025-5-31 10:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit