Forgot password?
 Create new account
View 2502|Reply 7

[几何] 平面向量一题,求$\vv{b}·\vv{c}$的最大值

[Copy link]

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2019-5-30 15:08:18 |Read mode
平面向量$\vv{a},\vv{b},\vv{c}$,满足$\abs{\vv{a}}=\abs{\vv{b}}=2$,若$(\vv{c}-0.5\vv{a})·(\vv{c}-\vv{b})=0$,求$\vv{b}·\vv{c}$的最大值.

Related collections:

178

Threads

236

Posts

2629

Credits

Credits
2629

Show all posts

hjfmhh Posted at 2019-5-30 21:21:37
70932285959240427_1.jpg

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1 硬算也是实力,代码更利于长存 ...

View Rating Log

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2019-5-30 21:29:48
谢谢,

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2019-5-31 09:23:03
回复 2# hjfmhh

解 by hjfmhh 代码(摘取核心代码,非全部)如下
  1. 设 $B(2\cos\theta,2\sin\theta)$, 圆心 $(\cos\theta+\frac 12,\sin\theta)$, 点 $C$ 的轨迹(方程为) $\left(x-\cos\theta-\frac 12\right)^2+(y-\sin\theta)^2=\frac{5-c\cos\theta}4.$
  2. 令 $$\vv c =\left(\cos\theta+\frac 12+\frac{\sqrt{5-4\cos\theta}}2 \cos\varphi,\sin\theta+\frac{\sqrt{5-4\cos\theta}}2 \sin\varphi \right),$$
  3. $$\vv b\cdot \vv c=\cdots=2+\cos\theta+\sqrt{5-4\cos\theta}\cos(\theta-\varphi)\leqslant 2+\cos\theta+\sqrt{5-4\cos\theta},$$
  4. 令 $$\sqrt{5-4\cos\theta}=t\in [1,3],$$ 则 $$\cos\theta=\frac{5-t^2}4.$$
  5. \begin{align*}
  6. 2+\cos\theta+\sqrt{5-4\cos\theta}
  7. &=2+\frac{5-t^2}4+t\\
  8. &=-\frac 14(t-2)^2+\frac{17}4\\
  9. &\leqslant \frac{17}4.
  10. \end{align*}
  11. 当且仅当 $$t=2,\cos\theta=\frac 14,\theta=\arccos\frac 14=\varphi$$ 时,达到了大值 $\frac{17}4$.
Copy the Code
==============
效果如下显示:

设 $B(2\cos\theta,2\sin\theta)$, 圆心 $(\cos\theta+\frac 12,\sin\theta)$, 点 $C$ 的轨迹(方程为) $\left(x-\cos\theta-\frac 12\right)^2+(y-\sin\theta)^2=\frac{5-c\cos\theta}4.$

令 $$\vv c =\left(\cos\theta+\frac 12+\frac{\sqrt{5-4\cos\theta}}2 \cos\varphi,\sin\theta+\frac{\sqrt{5-4\cos\theta}}2 \sin\varphi \right),$$

$$\vv b\cdot \vv c=\cdots=2+\cos\theta+\sqrt{5-4\cos\theta}\cos(\theta-\varphi)\leqslant 2+\cos\theta+\sqrt{5-4\cos\theta},$$

令 $$\sqrt{5-4\cos\theta}=t\in [1,3],$$ 则 $$\cos\theta=\frac{5-t^2}4.$$

\begin{align*}
2+\cos\theta+\sqrt{5-4\cos\theta}
&=2+\frac{5-t^2}4+t\\
&=-\frac 14(t-2)^2+\frac{17}4\\
&\leqslant \frac{17}4.
\end{align*}

当且仅当 $$t=2,\cos\theta=\frac 14,\theta=\arccos\frac 14=\varphi$$ 时,达到了大值 $\frac{17}4$.

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

敬畏数学 Posted at 2019-5-31 16:53:20
算量够大。

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2019-6-1 05:59:05
211.png
矩形$ BEDF, \vv b\cdot \vv c $的最大值$ C $点必在劣弧$ BF $中点取得。有\[  
\vv b\cdot \vv c_{max}=2\times [2+\dfrac{1}{2}(BD-BE)]=4+BD-BE=4+BD(1-cos\theta )=4+BD\times \dfrac{4BD-BD^2-3}{4BD}=4+\dfrac{1-(BD-2)^2}{4}\leqslant  \dfrac{17}{4}
\]取等略……

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2019-6-1 08:02:45
Last edited by realnumber at 2019-6-1 08:11:00 QQ截图20190304221209aaa1.png QQ截图20190304221209aaa2.png
如图1$\vv{OA}=0.5\vv{a},\vv{OB}=\vv{b},\vv{OC}=\vv{c}$经分析要使$\vv{b}·\vv{c}$取最大,C点在圆外,对固定的C点,且∠ACB为直角
B点越靠近直线OC,则$\vv{b}·\vv{c}$越大,如此取最大时有OA⊥AC(A是切点).重新建立直角坐标系,见图2
如图中所设坐标,BO=2,$(t-1)^2+y^2=4$
$\vv{b}·\vv{c}=(-1,y)·(t-1,y)=-t^2+t+4\le 4.25$,在t=0.5时取最大.

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2021-5-12 20:51:29
给出装逼解法如下:注意到
\[\bm b\cdot\bm c=\bm b^2+\frac1{16}\bm a^2+\frac 12(2\bm c-\bm a)\cdot(\bm c-\bm b)-\left( \frac14\bm a+\bm b-\bm c \right)^2,\]代入已知条件,即得
\[\bm b\cdot\bm c=4+\frac14-\left( \frac14\bm a+\bm b-\bm c \right)^2\leqslant\frac{17}4,\]取等略。

PS1、这也说明条件不必限制为平面向量。
PS2、挖此旧帖是因为刚才在 zhihu.com/question/458990078 里看到此题而搜索到这里。

手机版Mobile version|Leisure Math Forum

2025-4-20 22:16 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list