|
好像可以这样?
\[\sup {g_n}\left( y \right) \geqslant {g_n}\left( y \right),\forall n\]
\[\mathop {\underline {\lim } }\limits_{n \to \infty } \sup {g_n}\left( y \right) \geqslant g\left( y \right),\forall y\]
\[\mathop {\underline {\lim } }\limits_{n \to \infty } \sup {g_n}\left( y \right) \geqslant \sup g\left( y \right)\]
记 $g\left( y \right)$ 唯一的最大值点为 ${{y^ * }}$,则有 ${y_n} \to {y^ * }$ ,其中 ${g_n}\left( {{y_n}} \right) = \sup {g_n}\left( y \right)$ 否则存在 ${y_{{n_k}}} \to \hat y$ 使得\[\mathop {\lim }\limits_{{n_k} \to \infty } {g_{{n_k}}}\left( {{y_{{n_k}}}} \right) = g\left( {\hat y} \right) < g\left( {{y^ * }} \right)\]与之前的不等式矛盾,所以\[\mathop {\lim }\limits_{n \to \infty } \sup {g_n}\left( y \right) = \mathop {\lim }\limits_{n \to \infty } {g_n}\left( {{y_n}} \right) = g\left( {{y^ * }} \right) = \sup \frac{{1 - \cos y}}{y} \approx 0.72\] |
|