Forgot password?
 Create new account
View 2114|Reply 8

[函数] 求三角函数的最大值

[Copy link]

410

Threads

1044

Posts

110K

Credits

Credits
11577

Show all posts

lemondian Posted at 2020-1-23 20:25:21 |Read mode
Last edited by lemondian at 2020-1-25 13:05:00求三角函数的最大值:
求函数$f(x)=2\sqrt{5}sinx+3sin2x+6cosx$的最大值。

Related collections:

410

Threads

1044

Posts

110K

Credits

Credits
11577

Show all posts

 Author| lemondian Posted at 2020-1-25 13:46:11
这题有人解答下么?

701

Threads

110K

Posts

910K

Credits

Credits
94167
QQ

Show all posts

kuing Posted at 2020-1-25 16:36:41
类似于你之前这帖 kuing.cjhb.site/forum.php?mod=viewthread&tid=6498,所以同样可以写出装逼解法如下:
\[f(x)=\frac{14}3\sqrt5-\frac{3\sqrt5+3}2\left( \sin x-\cos x-\frac{2-\sqrt5}3 \right)^2-\frac{3\sqrt5-3}2\left( \sin x+\cos x-\frac{2+\sqrt5}3 \right)^2\leqslant\frac{14}3\sqrt5,\]当 `x=\arcsin(2/3)` 时取等。

701

Threads

110K

Posts

910K

Credits

Credits
94167
QQ

Show all posts

kuing Posted at 2020-1-27 22:04:58
回复 3# kuing

还可以进一步写成更装逼的
\[f(x)=\frac{14}3\sqrt5-12\sin^2\frac{x-\arcsin\frac23}2\left( \sqrt5+\sin\left( x+\arcsin\frac23 \right) \right).\]

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2020-1-30 21:51:07
200130215058141c8ec1f3a259.jpg
把这里的第二题誊下来:$f(x)=\sqrt3\sin2x+2\sin x+4\sqrt3\cos x$的最大值为

701

Threads

110K

Posts

910K

Credits

Credits
94167
QQ

Show all posts

kuing Posted at 2020-1-30 22:10:57
回复 5# hbghlyj

这个数据更简单,30度取等,有
\[\sqrt3\sin2x+2\sin x+4\sqrt3\cos x=\frac{17}2-4\sin^2\frac{6x-\pi}{12}\left( 5+\sqrt3\sin\left( x+\frac\pi6 \right) \right).\]

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2020-1-30 23:41:49
回复 6# kuing
第五届"学数学"秋季赛第一题
2001302345311033472aeae650.jpg

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2020-1-30 23:54:31
Last edited by hbghlyj at 2020-1-31 16:37:00回复 7# hbghlyj
第3题誊下来:
$x,y\in\mathbf R,$则$|2x-y|+4|\frac x2+\frac2y|(y\ne 0)$的最小值是
由三角不等式,原式\[\left| {(2x - y) - 4\left( {\frac{x}{2} + \frac{2}{y}} \right)} \right| = \left| {y + \frac{8}{y}} \right| \ge 4\sqrt 2 \]
当且仅当$-2\le x\le 2,y=\pm\sqrt2$时取等.

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

力工 Posted at 2020-1-31 15:40:12
回复 8# hbghlyj
不是三角不等式吗?
原式$\geqslant|(2x-y)-4(\frac{x}{2}+\frac{2}{y})|$

手机版Mobile version|Leisure Math Forum

2025-4-20 21:59 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list