Forgot password
 Register account
View 1689|Reply 0

[函数] 2020年浙江卷第22题 导数零点含参不等式

[Copy link]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2020-7-17 23:47 |Read mode
已知$1<a\leqslant 2$,函数$f\left( x \right)={\text{e}^x}-x-a$,其中$e=2.71828\cdots$是自然对数的底数.

(Ⅰ)证明:函数$y=f\left( x \right)$在$(0,+\infty )$上有唯一零点;

(Ⅱ)记$x_0$为函数$y=f\left( x \right)$在$(0,+\infty )$上的零点,证明:

(ⅰ)$\sqrt{a-1}\leqslant x_0 \leqslant \sqrt{2(a-1)}$;

(ⅱ)${x_0}f\left(e^{x_0}\right)\geqslant (e-1)(a-1)a$.


2020年浙江卷第22题  似乎就是平常题,但对偶写起来,总是欠那么一点,山穷水尽,又一村。

论坛里发过,不过,这是偶今年最喜欢的大题,再发次(归个类,方便搜索),解见这里

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-23 12:36 GMT+8

Powered by Discuz!

Processed in 0.011467 seconds, 22 queries