Forgot password?
 Create new account
View 295|Reply 2

奇数阶$A$行列式为正,存在非零向量使二次型为正

[Copy link]

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

abababa Posted at 2021-7-10 17:00:18 |Read mode
已知奇数阶实对称矩阵$A$的行列式大于零,求证存在非零向量$\vv{x}$使$\vv{x}^TA\vv{x}>0$。

我的证明如下:
假设$A$没有正的特征值,则$A$至少是半负定矩阵,因此$\det(A)\le 0$,这与$\det(A)>0$矛盾,因此$A$必有正的特征值。

于是$A$的规范型中必含有$1$,设可逆矩阵$P=(a_{ij})$能将$A$变为规范型,即$P^TAP = \text{diag}(1,\cdots,1,-1,\cdots,-1,0,\cdots,0)=\Lambda$,其中有$p$个$1$,取向量$\vv{y}=(1,0,\cdots,0)^T$,令$\vv{x}=P\vv{y}=(a_{11},a_{21},\cdots,a_{n1})^T$,于是
\[\vv{x}^TA\vv{x} = (a_{11},a_{21},\cdots,a_{n1})^T\Lambda(a_{11},a_{21},\cdots,a_{n1})=a_{11}^2+\cdots+a_{1s}^2-a_{1(s+1)}^2-\cdots-a_{1t}^2\]
只要令$a_1$充分大,上式即大于零。

是不是有什么问题啊?没用到奇数阶的条件。

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

 Author| abababa Posted at 2021-7-11 09:26:47
回复 1# abababa

我明白我错在哪了,那个$a_{11}$并不是随意选的,而是从规范型里定出来的,所以这样不能让它充分大。

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2023-1-6 09:23:39
abababa 发表于 2021-7-11 02:26
回复 1# abababa

我明白我错在哪了,那个$a_{11}$并不是随意选的,而是从规范型里定出来的,所以这样不能 ...
这样证明可以吗:
$A$必有正的特征值$λ$, 设$v$为$λ$对应的一个特征向量, 则$v^TAv=v^T(λv)=λ\|v\|^2>0$

手机版Mobile version|Leisure Math Forum

2025-4-21 14:37 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list