找回密码
 快速注册
搜索
查看: 347|回复: 7

Minkowski定理

[复制链接]

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

hbghlyj 发表于 2022-2-12 19:43 |阅读模式
本帖最后由 hbghlyj 于 2023-5-6 00:24 编辑 Minkowski定理:设$L$为$\mathbb R^n$中的格,行列式为$d(L)$,$S$为$ℝ^n$中一个关于原点对称的凸集,即:若$x∈S$则$−x∈S$.若$S$的体积小于$2^nd(L)$,则$S$至少包含一个除原点外的格点.[由于集合$S$是对称的,因此它将包含至少三个格点:原点和一对点$±x$,其中$x∈L\setminus\{0\}$.]

对于$L=\mathbb R^n$,有$d(L)=1$,定理可叙述为:$\mathbb R^n$中关于原点对称且面积大于$2^n$的凸集S至少包含一个除原点外的整点("整点"是指$\mathbb Z^n$的元素).[由于集合$S$是对称的,因此它将包含至少三个格点:原点 0 和一对点$±x$,其中$ x ∈\mathbb Z^n  \setminus 0$]
下面证明 Minkowski 定理的n=2情况(ℤ2中关于原点对称且面积大于4的凸集至少包含一个除原点外的整点.)
考虑映射$f: S \to \mathbb{R}^2/2L, \qquad (x,y) \mapsto (x \bmod 2, y \bmod 2)$
直观上,这个映射将平面切割成 2×2 的正方形,然后将这些正方形堆叠在一起.
显然$f(S)$的面积≤4,因为它包含于2×2的方形.为了反证,假设$f$是单射,也就是说$S$以非重叠的方式被正方形堆叠起来.
因$f$局部保持面积,这个不重叠的性质使它对所有的$S$保持面积,所以$f(S)$的面积等于$S$的面积,但是$S$的面积>4,$f(S)$的面积≤4,矛盾.
因此$f$不是单射,即在$S$中存在两点$p_1,p_2$,被$f$映射为同一点:$f(p_1)=f(p_2)$.
由$f$的定义,只要$f(p_1)=f(p_2)$就有不全为0的整数$i,j$使$p_2=p_1+(2i,2j)$.
也就是说,两点的坐标相差两个偶数。
因为$S$关于原点对称,$-p_1$也属于$S$.因为$S$是凸集,$−p_1$到$p_2$的线段包含于$S$,从而这条线段的中点属于$S$:$\tfrac{1}{2}\left(-p_1 + p_2\right) = \tfrac{1}{2}\left(-p_1 + p_1 + (2i, 2j)\right) = (i, j)∈S$.
注意到$(i,j)$是一个整点,且不为原点,因为$i,j$不全为0.所以,$S$包含一个除原点外的整点.

注:
  • The argument above proves the theorem that any set of volume $ > \det(L)$ contains two distinct points that differ by a lattice vector. This is a special case of Blichfeldt's theorem.
  • The argument above highlights that the term $2^n \text{det}(L)$ is the covolume of the lattice $2 L $.
  • To obtain a proof for general lattices, it suffices to prove Minkowski's theorem only for $\mathbb{Z}^n $; this is because every full-rank lattice can be written as $B \mathbb{Z}^n$ for some linear transformation $B$, and the properties of being convex and symmetric around the origin are preserved by linear transformations, while the covolume of $B \mathbb{Z}^n$ is $|\text{det}(B)|$ and volume of a body scales by exactly $ \frac{1}{\text{det}(B)} $ under an application of $ B^{-1} $.

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2022-2-12 20:00
本帖最后由 hbghlyj 于 2022-2-12 20:16 编辑 费马二平方和定理可以使用最短向量的 Minkowski 界来证明。
定理:任何模4余1的素数可以表成两个整数的平方和.
证明:因为$4 | p - 1$且$a$为模$p$的二次剩余当且仅当$a^{\frac{p-1}{2}} = 1~(\text{mod}~p)$(Euler判别法),所以$-1$在$\mathbb{Z}/p\mathbb{Z}$中有平方根;在$\mathbb{Z}$中取一个它的代表元$j$.考虑基向量为$(1, j), (0,p)$的网格$L$,设$B$为其关联矩阵.$L$的行列式为$p$,由Minkowski 界知,存在不为原点的$x = (x_1, x_2) \in \mathbb{Z}^2,0 <\|Bx\|_2^2 < 2p$.我们有$\|Bx\|^2 = \| ( x_1, jx_1 + px_2 )\|^2 = x_1^2 + (jx_1 + px_2)^2$ 定义整数$a = x_1, b = (jx_1 + px_2)$. Minkowski界指出$0 < a^2 + b^2 < 2p$,通过模算术可知$a^2 + b^2 = x_1^2 + (jx_1 + px_2)^2 = 0 \mod p$,于是得出$a^2 + b^2 = p $. QED

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2022-2-12 20:19
本帖最后由 hbghlyj 于 2022-2-12 21:10 编辑 Dirichlet逼近定理可以使用Minkowski定理来证明:考虑平行四边形内部点集$$S = \left\{ (x,y) \in ℝ^2; -N-\frac{1}{2} \leq x \leq N+\frac{1}{2}, \vert \alpha x - y \vert \leq \frac{1}{N} \right\}.$$
因为$S$的面积>4,Minkowski表明$S$中存在一个不为原点的整点.证毕.
这个证明可以自然地推广:考虑集合$$S = \left\{ (x,y_1, \dots, y_d) \in ℝ^{1+d}; -N-\frac{1}{2} \le x \le N+\frac{1}{2}, |\alpha_i x - y_i| \le \frac{1}{N^{1/d}} \right\}.$$


顺便补充Dirichlet逼近定理用来证明{cos(n)|n∈ℤ}在(-1,1)中的稠密性:
我们有$|\cos x-\cos y|\le |x-y|$∀$x,y$.
对于给定的$t\in[-1,1]$可找到$x\in[0,2\pi)$使$\cos x=t$.固定$\epsilon>0$,证明稠密性就要是证明存在$n∈ℤ$使$|t-\cos n|<\epsilon$.注意到$\cos (x+2\pi m)=t$对任意$m\in\mathbb Z$.
如果存在$n∈ℤ$使$|(x+2\pi m)-n|<\epsilon$,我们就证明完了,因为$$ |t-\cos n|=|\cos(x+2\pi m)-\cos n|\le|(x+2\pi m)-n|<\epsilon. $$(这里不必考虑$n$的符号,因为$\cos(n)=\cos(-n)$.)
假若不然,固定$k$使$1/k<\epsilon$,假设$|(x+2\pi m)-n|\ge\frac1k$∀$m,n$∈ℤ.考虑数列$x_m=\{2\pi m\}$其中$\{r\}$表示$r$的小数部分.则有$m<l$使$|x_m-x_l|<1/k$[因为0和1之间的$N$个数必有两个数距离小于$1/N$].因为$\pi$是无理数,我们有$0<|x_m-x_l|$.最后,注意到$|x_m-x_l|=|2\pi(m-l)+c|$对某个整数$c$.

用$s$表记$|x_m-x_l|$.考虑数$x,x+s,x+2s,x+3s,\dots$. Since all of them have the form $x+2\pi a+b$ for some $a,b\in\mathbb Z$, we must have that they are all at distance at least $1/k$ from any integer. Given $n\in\mathbb N$, let $M\in\mathbb Z$ be such that $M+1/k\le x+ns\le M+1-1/k$. Note that $M+1/k< x+(n+1)s< M+1$, since $0<s<1/k$. But then $x+(n+1)s\le M+1-1/k$ as well. This is of course absurd, because by induction it means that if $M+1/k\le x\le M+1-1/k$, then the same inequalities hold replacing $x$ with $x+ns$ for any $n\in\mathbb N$.

The above appears to avoid the density fact you are given ([Dirichlet's approximation theorem][3]), though the argument in the third paragraph is just its proof. If one wants to use the density fact explicitly, note that $2\pi$ is irrational, so there are arbitrarily large $q$ for which there is a $p$ with $$ \left|2\pi-\frac pq\right|<\frac1{q^2}. $$
取充分大的$q$使$1/q<\epsilon$,设$s=|2\pi q-p|$,继续第四段.


顺便补充sin(x)是压缩映射[即|sin(x)-sin(y)|<|x-y|,∀x≠y]的证明:
$$|\sin x - \sin y| = \left| 2 \sin \frac{x-y}{2} \cos\frac{x+y}{2} \right| \,.$$
显然有$\left| \sin \frac{x-y}{2}\right|< \left|\frac{x-y}{2}\right|$和$\left|\cos\frac{x+y}2\right|\leq 1$.当$x-y \neq 0$时第一个不等式是严格的.
第二种证明:设$x<y$,由中值定理,
$$\left|{\sin y-\sin x\over y-x}\right|=\left|{1\over y-x}\int_x^y\cos t\>dt\right|=\left|\int_0^1 \cos\bigl(x+\tau(y-x)\bigr)\>d\tau\right|\leq\int_0^1 \bigl|\cos\bigl(x+\tau(y-x)\bigr)\bigr|\>d\tau<1\ ,$$
因为$\bigl|\cos\bigl(x+\tau(y-x)\bigr)\bigr|\leq1$,但不恒为1.

48

主题

992

回帖

1万

积分

积分
14981
QQ

显示全部楼层

Czhang271828 发表于 2022-2-12 20:22
回复 2# hbghlyj

感觉话说多了? 质数 $p\equiv 1\mod 4$ 等价于存在 $a,m\in\mathbb Z$ 使得 $a^2+1=mp$, 即 $(a-i)(a+i)=m\cdot p$. 由于 $\mathbb Z [\sqrt{-1}]$ 是唯一分解整环, 从而存在 $(a+i)$ 的某个因子 $w$ 使得 $w\overline w=p$.
无钱佮歹看、无样佮歹生、无汉草佮无文采、无学历佮无能力、无高度无速度无力度共闲无代志。(闽南话)
口号:疼惜生命,远离内卷。

48

主题

992

回帖

1万

积分

积分
14981
QQ

显示全部楼层

Czhang271828 发表于 2022-2-12 22:35
补充一个四平方和问题的简单证明 ($2n$ 平方和精确解可以用 modular form 搞出来, 参考 GTM228)

Step1: 对四元数 $x$ 和 $y$, 由 $|xy|=|x|\cdot|y|$ 可得四平方和恒等式. 简单地说, 若 $p$ 与 $q$ 均能表示为四个整数的平方和, 则 $pq$ 也能表示为四个整数的平方和. 我们仅需证明所有奇质数能被写成四平方和形式.

Step 2: 对奇质数 $p$, 我们断言存在整数 $\alpha$ 与 $\beta$ 使得 $\alpha^2+\beta^2+1\equiv \mod p$. 因为对任意 $k_1,k_2\in\{0,1,\ldots,(p-1)/2\}$ 均有
$$
k_1^2-k_2^2\equiv (k_1+k_2)(k_1-k_2)\mod p.
$$
从而集合 $K=\{k^2\in\mathbb Z/p\mathbb Z:0\leq k< p/2\}$ 大小为 $p+1/2$, 进而 $K+K=\{x+y:x,y\in K\}=\mathbb Z/p\mathbb Z$. 从而断言得证.

Step 3: 令
$$
L(\subset \mathbb Z^4)=\{(a_1,a_2,a_3,a_4):a_1\equiv \alpha a_3+\beta a_4,a_2\equiv \beta a_3-\alpha a_4\mod p \}.
$$
从而 $L$ 视作 $\mathbb Z^4$ 的子 Lattice 时, $\mathbb Z^4/L$ 的元素个数不超过 $p^2$. 记 $B(r)=\{x:\|x\|^2\leq r^2\}$, 则
$$
|B(\sqrt{2p})|=\dfrac{\pi^2}{2}\sqrt{2p}^4>2^4\det (L).
$$
因此存在 $v\in L$ 使得 $0<\|v\|<\sqrt{2p}$. 由于
$$
\|v\|^2\equiv a_1^2+a_2^2+a_3^2+a_4^2\equiv 0\mod p.
$$
从而只能有 $\|v\|^2=p$.
无钱佮歹看、无样佮歹生、无汉草佮无文采、无学历佮无能力、无高度无速度无力度共闲无代志。(闽南话)
口号:疼惜生命,远离内卷。

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2022-2-26 10:41

A SHORT PROOF OF CAUCHY'S POLYGONAL NUMBER THEOREM

PDF
CAUCHY's LEMMA. Let $a$ and $b$ be odd positive integers such that $b^{2}<4 a$ and $3 a<b^{2}+2 b+4 .$ Then there exist nonnegative integers $s, t, u, v$ such that
$$a=s^{2}+t^{2}+u^{2}+v^{2},\tag{1}$$
$$b=s+t+u+v .\tag{2}$$
PROOF. Since $a$ and $b$ are odd, it follows that $4 a-b^{2} \equiv 3(\bmod 8)$, and so, by Gauss's triangular number theorem, there exist odd integers $x \geqslant y \geqslant z>0$ such that
$$
4 a-b^{2}=x^{2}+y^{2}+z^{2}\tag3
$$Choose the sign of $\pm z$ so that $b+x+y \pm z \equiv 0\pmod 4$. Define integers $s, t, u, v$ by
$$
\begin{gathered}
s=\frac{b+x+y \pm z}{4}, \quad t=\frac{b+x}{2}-s=\frac{b+x-y \mp z}{4} \\
u=\frac{b+y}{2}-s=\frac{b-x+y \mp z}{4}, \quad v=\frac{b \pm z}{2}-s=\frac{b-x-y \pm z}{4} .
\end{gathered}
$$
Then equations (1) and (2) are satisfied, and $s \geqslant t \geqslant u \geqslant v$. To show these integers are nonnegative, it suffices to prove that $v \geqslant 0$, or $v>-1$. This is true if $b-x-y$ $-z>-4$, or, equivalently, if $x+y+z<b+4$. The maximum value of $x+y+z$ subject to the constraint (3) is $\sqrt{12 a-3 b^{2}}$, and the inequality $3 a<b^{2}+2 b+4$ implies that $x+y+z \leqslant \sqrt{12 a-3 b^{2}}<b+4$. This proves the lemma.

THEOREM 1 . Let $m \geqslant 3$ and $n \geqslant 120 m$. Then $n$ is the sum of $m+1$ polygonal numbers of order $m+2$, at most four of which are different from 0 or 1 .

Proof. Let $b_{1}$ and $b_{2}$ be consecutive odd integers. The set of numbers of the form $b+r$, where $b \in\left\{b_{1}, b_{2}\right\}$ and $r \in\{0,1, \ldots, m-3\}$, contains a complete set of residue classes modulo $m$, and so $n \equiv b+r(\bmod m)$ for some $b \in\left\{b_{1}, b_{2}\right\}$ and $r \in\{0,1, \ldots, m-3\} .$ Define
$$a=2\left(\frac{n-b-r}{m}\right)+b=\left(1-\frac{2}{m}\right) b+2\left(\frac{n-r}{m}\right)\tag{4}$$
Then $a$ is an odd integer, and
$$\tag{5}
n=\frac{m}{2}(a-b)+b+r .
$$
If $0<b<\frac{2}{3}+\sqrt{8(n / m)-8}$, then the quadratic formula implies that
$$
b^{2}-4 a=b^{2}-4\left(1-\frac{2}{m}\right) b-8\left(\frac{n-r}{m}\right)<0
$$
and so $b^{2}<4 a$. Similarly, if $b>\frac{1}{2}+\sqrt{6(n / m)-3}$, then $3 a<b^{2}+2 b+4$. Since the length of the interval
$$I=\left(\frac{1}{2}+\sqrt{6\left(\frac{n}{m}\right)-3}, \frac{2}{3}+\sqrt{8\left(\frac{n}{m}\right)-8}\right)\tag{6}$$
is greater than 4, it follows that $I$ contains two consecutive odd positive integers $b_{1}$ and $b_{2}$. Thus, there exist odd positive integers $a$ and $b$ that satisfy (5) and the inequalities $b^{2}<4 a$ and $3 a<b^{2}+2 b+4$. Cauchy's Lemma implies that there exist $s, t, u, v$ satisfying (1) and (2), and so
$$
\begin{aligned}
n &=\frac{m}{2}(a-b)+b+r=\frac{m}{2}\left(s^{2}-s\right)+s+\cdots+\frac{m}{2}\left(v^{2}-v\right)+v+r \\
&=p_{m}(s)+p_{m}(t)+p_{m}(u)+p_{m}(v)+r .
\end{aligned}
$$
This completes the proof.
Note that this result is slightly stronger than Cauchy's theorem. Legendre [6] proved that every sufficiently large integer is the sum of five polygonal numbers of order $m+2$, one of which is either 0 or 1 . This can also be easily proved.


THEOREM 2 . Let $m \geqslant 3$. If $m$ is odd, then every sufficiently large integer is the sum of four polygonal numbers of order $m+2$. If $m$ is even, then every sufficiently large integer is the sum of five polygonal numbers of order $m+2$, one of which is either 0 or $1 .$

Proof. There is an absolute constant $c$ such that if $n>\mathrm{cm}^{3}$, then the length of the interval $I$ defined in (6) is greater than $2 m$, and so $I$ contains at least $m$ consecutive odd integers.

If $m$ is odd, these form a complete set of residues modulo $m$, and so $n \equiv b$ $(\bmod m)$ for some odd number $b \in I$. Let $r=0$. Define $a$ by formula (4).

If $m$ is even and $n>cm^3$, then $n \equiv b+r(\bmod m)$ for some odd integer $b \in I$ and $r \in\{0,1\}$. Define $a$ by (4).
In both cases, the theorem follows immediately from Cauchy's Lemma.

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2023-5-4 18:42
Czhang271828 发表于 2022-2-12 13:22
回复 2# hbghlyj

感觉话说多了? 质数 $p\equiv 1\mod 4$ 等价于存在 $a,m\in\mathbb Z$ 使得 $a^2+1=mp$, ...

From REU12:

53. Of the following statements, show that $(\mathrm{a}) \Leftrightarrow(\mathrm{b}) \Leftrightarrow(\mathrm{c}) \Leftarrow(\mathrm{d})$.
(a) $\mathbb{F}_{p}[\sqrt{-1}]$ is not a field.
(b) $\exists$ an isotropic vector in $\mathbb{F}_{p}^{2}$.
(c) $(\exists x)\left(x^{2} \equiv-1 \bmod p\right)$.
(d) $(\exists a, b>0)\left(p=a^{2}+b^{2}\right)$.
54. * Show that in fact (d) is equivalent to the rest of the statements.
55. (a) (Experiment) Observe a very simple characterization of the primes for which the statements in Problem 53 are true.
(b) Show: there exist infinitely many primes for which all the statements in problem 53 are false. (Hint: Fermat's little Theorem)
(c*) Show: there exist infinitely many primes for which all the statements in problem 53 are true. (Hint: use the theorem that there exists a primitive root modulo $p$.)

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2023-5-4 18:42
(b)⇒(a):$(a,b)·(a,b)\equiv0\bmod p⇒a\pm b\sqrt{-1}\ne0$ but $(a+b\sqrt{-1})(a-b\sqrt{-1})\equiv0\bmod p⇒\mathbb{F}_{p}[\sqrt{-1}]$ is not a field.
(b)⇒(c):$(a,b)·(a,b)\equiv0\mod p⇒a^2+b^2\equiv0\bmod p⇒(ab^{-1})^2\equiv-1\bmod p$
(d)⇒(c):$p=a^2+b^2⇒a^2+b^2\equiv0\bmod p⇒(ab^{-1})^2\equiv-1\bmod p$

手机版|悠闲数学娱乐论坛(第3版)

GMT+8, 2025-3-4 12:20

Powered by Discuz!

× 快速回复 返回顶部 返回列表