找回密码
 快速注册
搜索
查看: 239|回复: 4

[函数] 负或分数幂二项式定理 不同的证明

[复制链接]

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

hbghlyj 发表于 2022-3-2 11:15 |阅读模式
本帖最后由 hbghlyj 于 2025-2-16 09:51 编辑 通常二项式定理可以直接使用泰勒公式进行证明.
下面的方法不使用泰勒公式
设$f(x)=(1+x)^a$, $\displaystyle g(x)=\sum_{k=0}^{\infty}{a \choose k}x^k$.
易证$g(x)$收敛于$|x|<1$,易得$f(x)$满足\[\label1(1+x)f'(x) = a f(x)\tag1\] 再证明$\displaystyle g(x)=1+ \sum_{k=1}^{\infty}{a \choose k}x^k$亦满足上述\eqref{1}:
\begin{align*}
{a \choose {k+1} }(k+1) & = \frac{a(a-1)\cdots(a - k + 1)(a - k)}{(k+1)!}(k+1) \\
                   & = \frac{a(a-1)\cdots(a - k + 1)(a - k)}{k!} \\
                   & = {a \choose k}(a-k)
\end{align*}
所以$$
\begin{align*}
g'(x) & = \sum_{k=1}^{\infty}{a \choose k}k x^{k-1} \\
      & = \sum_{k=0}^{\infty}{a\choose {k+1}}(k+1) x^{k} \\
      & = \sum_{k=0}^{\infty}{a \choose k}(a-k) x^k \\
\end{align*}
$$于是$$
\begin{align*}
(1+x)g'(x) & =  g'(x) + x \sum_{k=1}^{\infty}{a \choose k}k x^{k-1}
\\ & = \sum_{k=0}^{\infty}{a \choose k}(a-k) x^k + \sum_{k=1}^{\infty}{a \choose k}k x^{k}
\\ & =\sum_{k=0}^{\infty}{a \choose k}(a-k) x^k + \sum_{k=0}^{\infty}{a \choose k}k x^{k}
\\ & =\sum_{k=0}^{\infty}{a \choose k}x^k (a-k+k)
\\ & =a \sum_{k=0}^{\infty}{a \choose k}x^k
\\ & =a \cdot g(x)
\\ \end{align*}
$$$$\therefore \frac{f'(x)}{f(x)}=\frac{g'(x)}{g(x)}$$$$g'(x)f(x)=f'(x)g(x)$$根据除法法则,$\frac{d}{dx} \left(\frac{g(x)}{f(x)}\right)=\frac{g'(x)f(x)-f'(x)g(x)}{(f(x))^2}=0$,$\frac{g(x)}{f(x)}$是常数函数.$$\frac{g(x)}{f(x)}=\frac{g(0)}{f(0)}=1$$$$f(x)=g(x)$$

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2022-3-2 11:29
本帖最后由 hbghlyj 于 2022-9-18 16:05 编辑

类似的证法见于这份讲义的71页:
Theorem 2.4.7 (The Binomial Expansion) Let $p$ be a real number, and let $P(x)$ be the power series $$ P(x)=1+p x+\frac{p(p-1)}{2 !} x^{2}+\cdots+\frac{p(p-1) \cdots(p-n+1)}{n !} x^{n}+\cdots $$ whose convergence radius $R=1$ unless $p=0$ or $p \in \mathbb{N}$. If $p \in \mathbb{N}, P(x)$ is a polynomial of degree $p$.
1) For any real number $p$ we have $$ (1+x)^{p}=P(x) \quad \text { for } x \in(-1,1) $$ 2) If $p>0$ then $$ (1+x)^{p}=P(x) \quad \text { for } x \in(-1,1] $$
If $p=0$ or $p \in \mathbb{N}, P(x)$ is reduced to a polynomial, 1) and 2) follow immediately from the ordinary binomial formula. Let us first show that $P(x)$ is the Taylor expansion for the function $f(x)=(1+x)^{p}$ for $x>-1$ at $a=0$. In fact $$ \begin{aligned} f^{\prime}(x)=& p(1+x)^{p-1} \\ f^{\prime \prime}(x)=& p(p-1)(1+x)^{p-2} ; \\ & \cdots ; \\ f^{(k)}(x)=& p(p-1) \cdots(p-(k-1))(1+x)^{p-k} \end{aligned} $$so $f^{(k)}(0)=p(p-1) \cdots(p-(k-1)) .$ Hence the Taylor expansion of $f(x)$ at $a=0$ is by definition given by $$ P(x)=\sum_{k=0}^{\infty} \frac{p(p-1) \cdots(p-(k-1))}{k !} x^{k} $$ If $p \neq 0,1,2, \cdots$, then, by ratio test, the convergence radius $R=1 .$ For convenience, one may introduce notation $$ \left(\begin{array}{c} p \\ k \end{array}\right)=\frac{p(p-1) \cdots(p-(k-1))}{k !} $$ so that the Taylor's expansion of $(1+x)^{p}$ may be written as $$ P(x)=\sum_{k=0}^{\infty}\left(\begin{array}{c} p \\ k \end{array}\right) x^{k} $$ which is a polynomial of order $p$ in the case that $p$ is zero or a positive integer, as if $p \in \mathbb{N}$, then $\left(\begin{array}{c}p \\ k\end{array}\right)=0$ for $k>p$. Hence the case that $p \in \mathbb{N}$ is trivial, and reduces to the elementary Binomial expansion. In what follows, we may assume that $p \neq 0,1,2, \cdots$. To prove 1), Taylor's Theorem is not needed in fact, and the Identity Theorem does the job. Proof of part 1). Let us apply the Identity Theorem to $f(x)=(1+x)^{p}$ and its Taylor expansion $P(x)$ on the interval $(-1,1)$. Both are differentiable on $(-1,1)$, and, by chain rule, $$ f^{\prime}(x)=\frac{d}{d x} \exp (p \ln (1+x))=p(1+x)^{p} \frac{1}{1+x}=\frac{p}{1+x} f(x) $$ for $x>-1$, so that $f$ satisfies the differential equation: $$ (1+x) f^{\prime}(x)=p f(x) $$ where $-1\lt x<1$. One may expect that its Taylor expansion $P(x)$ should satisfies the same differential equation. In fact, we may write $$ P(x)=1+\sum_{n=1}^{\infty} \frac{p(p-1) \cdots(p-(n-1))}{n !} x^{n} $$ which is a power series with convergence radius $R=1$, so that $P(x)$ is differentiable on $(-1,1)$ and its derivative can be evaluated by differentiating it term by term: $$ P^{\prime}(x)=\sum_{n=1}^{\infty} \frac{p(p-1) \cdots(p-(n-1))}{(n-1) !} x^{n-1} $$ Hence $$ \begin{aligned} (1+x) P^{\prime}(x) &=\sum_{n=1}^{\infty} \frac{p(p-1) \cdots(p-(n-1))}{(n-1) !}(1+x) x^{n-1} \\ &=\sum_{n=0}^{\infty} \frac{p(p-1) \cdots(p-n)}{n !} x^{n}+\sum_{n=1}^{\infty} \frac{p(p-1) \cdots(p-(n-1))}{n !} n x^{n} \\ &=p+\sum_{n=1}^{\infty} \frac{p(p-1) \cdots(p-(n-1))}{n !}((p-n)+n) x^{n} \\ &=p+p \sum_{n=1}^{\infty} \frac{p(p-1) \cdots(p-(n-1))}{n !} x^{n} \\ &=p P(x) . \end{aligned} $$ We apply the Identity Theorem to $h(x)=P(x) / f(x)$ on $(-1,1)$, which is differentiable as well as $f(x) \neq 0$ for $x \in(-1,1)$. Now $$ \begin{aligned} h^{\prime} &=\frac{P^{\prime} f-P f^{\prime}}{f^{2}} \\ &=\frac{(1+x) P^{\prime} f-(1+x) f^{\prime} P}{(1+x) f^{2}} \\ &=\frac{p P f-p f P}{(1+x) f^{2}}=0 \end{aligned} $$ so that, according to Identity Theorem, $P(x) / f(x)$ is constant in $(-1,1)$, and therefore $\frac{P(x)}{f(x)}=\frac{P(0)}{f(0)}=1 \quad$ for all $x \in(-1,1)$ Hence $$ (1+x)^{p}=1+\sum_{n=1}^{\infty} \frac{p(p-1) \cdots(p-(n-1))}{n !} x^{n} \quad \text { for } x \in(-1,1) $$ Proof of 2). By 1) we only need to show that $f(1)=P(1)$ if $p>0$. In fact, if $p>0$, we prove that $f(x)=P(x)$ for $x \in[0,1]$ via Taylor's Theorem. We may assume that $p \in(0,1)$. Let us apply Taylor's Theorem to $f(x)=(1+x)^{p}$ which has derivatives of any order on $(-1, \infty)$. Hence, for any $x>-1$, there is a number $\xi_{n}$ between 0 and $x$ such that $$ (1+x)^{p}=1+\sum_{k=1}^{n-1} \frac{p(p-1) \cdots(p-(k-1))}{k !} x^{k}+E_{n}(x) $$ where $$ E_{n}(x)=\frac{f^{(n)}\left(\xi_{n}\right)}{n !} x^{n} $$ for some $\xi_{n} \in(-1,1)$, where $$ \frac{f^{(n)}(x)}{n !}=\frac{p(p-1) \cdots(p-(n-1))}{n !}(1+x)^{p-n} $$ Hence $$ E_{n}(x)=\frac{p(p-1) \cdots(p-(n-1))}{n !}\left(1+\xi_{n}\right)^{p}\left(\frac{x}{1+\xi_{n}}\right)^{n} $$ If $x \in[0,1]$, then $\xi_{n} \in(0,1)$ so that $$ \left|\left(1+\xi_{n}\right)^{p}\left(\frac{x}{1+\xi_{n}}\right)^{n}\right| \leq 2^{p} $$ and therefore $$ \begin{aligned} \left|E_{n}(x)\right| & \leq 2^{p}\left|\frac{p(p-1) \cdots(p-(n-1))}{n !}\right| \\ &=2^{p} p \frac{(1-p)(2-p) \cdots(n-1-p)}{n !} \\ &=2^{p} p \frac{1-p}{1} \frac{2-p}{2} \cdots \frac{n-1-p}{n-1} \frac{1}{n} \\ & \leq \frac{2^{p} p}{n} \rightarrow 0 \end{aligned} $$ so that, by the Sandwich lemma, $E_{n}$ converges to zero uniformly on $[0,1] .$ It follows that $(1+x)^{p}=$ $P(x)$ for $x \in[0,1]$. Together with the first part 1), 2) now follows. For $p>0$, we can show that $(1+x)^{p}=P(x)$ for every $x \in[-1,1]$, which will be the context of the following theorem. Before doing this, we observe that, for $\alpha>0$ $$ \lim _{x>0, x \rightarrow 0} x^{\alpha}=\lim _{x \downarrow 0} \exp (\alpha \ln x)=0 $$ so we naturally define $0^{\alpha}=0$ for $\alpha>0$. Hence the power function $x^{\alpha}$ is continuous on $[0, \infty)$ if the power $\alpha>0$.

Theorem 2.4.8 Let $p$ be a real number, and $P(x)$ denote the Taylor expansion of $(1+x)^{p}$ at 0, that is $$ P(x)=1+\sum_{n=1}^{\infty} \frac{p(p-1) \cdots(p-(n-1))}{n !} x^{n} $$ 1) If $p>-1$ then $(1+x)^{p}=P(x)$ all $x \in(-1,1]$.
2) If $p>0$, then $(1+x)^{p}=P(x)$ for all $x \in[-1,1]$, and the convergence of the power series $P(x)$ is uniform on $[-1,1]$.
Assume that $p \neq 0,1,2, \cdots$. According to the Taylor Theorem, for every $x>-1$ and $n \in \mathbb{N}$, there is $\xi_{n}$ between 0 and $x$ such that $$ (1+x)^{p}=1+\sum_{m=1}^{n-1} \frac{p(p-1) \cdots(p-(n-1))}{m !} x^m+E_{n}(x) $$ where the error term is given by, as we have seen in the theorem, $$ \begin{aligned} E_{n}(x) &=\frac{p(p-1) \cdots(p-(n-1))}{n !}\left(1+\xi_{n}\right)^{p-n} x^{n} \\ &=\frac{p(p-1) \cdots(p-(n-1))}{n !}\left(1+\xi_{n}\right)^{p}\left(\frac{x}{1+\xi_{n}}\right)^{n} \end{aligned} $$ Step 1. If $x \in[0,1]$, then $\left|\frac{x}{1+\xi_{n}}\right|<1$ so that $$ \left|E_{n}(x)\right| \leq 2^{p} \frac{|p(p-1) \cdots(p-(n-1))|}{n !}=2^{p}\left|a(p)_{n}\right| $$ where $$ \begin{aligned} a(p)_{n} &=\frac{p(p-1) \cdots(p-(n-1))}{n !} \\ &=(-1)^{n} \frac{(-p)(1-p) \cdots((n-1)-p)}{n !} \end{aligned} $$ If $p \in(0,1)$ then $$ a(p)_{n}=(-1)^{n-1} \frac{p}{n}\left(1-\frac{p}{1}\right)\left(1-\frac{p}{2}\right) \cdots\left(1-\frac{p}{n-1}\right) $$ so that $$ \left|a(p)_{n}\right| \leq \frac{p}{n} \rightarrow 0 $$ which implies that $E_{n} \rightarrow 0$ uniformly on $[0,1]$ for this case that $p>0$. If $p \in(-1,0)$ then $1+p \in(0,1)$ and we may rewrite $$ \begin{aligned} a(p)_{n} &=(-1)^{n} \frac{(1-(p+1))(2-(p+1)) \cdots(n-(1+p))}{n !} \\ &=(-1)^{n}\left(1-\frac{p+1}{1}\right)\left(1-\frac{p+1}{2}\right) \cdots\left(1-\frac{p+1}{n}\right) \end{aligned} $$ Let us prove the elementary inequality $$ 1-t \leq e^{-t} \quad \text { for } t \geq 0 $$ Let $g(t)=1-t-e^{-t}$. Then $g(0)=0$ and $g^{\prime}(t)=-1+e^{-t} \leq 0$ for $t \geq 0$. Hence $g$ is decreasing on $[0, \infty)$ and therefore $g(t) \leq 0$ for all $t \geq 0$. By using this inequality we obtain, as $0<1+p<1$,$$\left|a(p)_{n}\right| \leq \exp \left(-(1+p) \sum_{k=1}^{n} \frac{1}{k}\right) \rightarrow 0$$as $1+p>0$ and $\sum_{k=1}^{n} \frac{1}{k} \rightarrow \infty$. Therefore $E_{n} \rightarrow 0$ as $n \rightarrow \infty$ uniformly on $[0,1]$ and $p>-1$, so that, together with Theorem 2.4.7, we thus have $$ (1+x)^{p}=1+\sum_{n=1}^{\infty} \frac{p(p-1) \cdots(p-(n-1))}{n !} x^{n} \quad \text { for } x \in(-1,1] $$ and the convergence is uniform on $[-1+\delta, 1]$ for any $0<\delta<1$. This proves 1 ) and part of 2 ). Step 2. Now we prove 2), so that we assume that $p>0$. Without losing generality, let us assume that $p \in(0,1)$. We want to show that $(1+x)^{p}=P(x)$ for all $x \in[-1,1]$ and the convergence is uniform on $[-1,1]$. Note that $$ P(x)=1+p x+\sum_{n=2}^{\infty} a(p)_{n} x^{n} \quad \forall x \in[-1,1] $$ where $$ a(p)_{n}=\frac{p(p-1) \cdots(p-(n-1))}{n !} $$ Of course we only need to show that $P(x)$ is convergent at $-1$. According to Abel's theorem, we only need to prove that the power series is convergent at $x=-1$, that is, $$ 1-p+\sum_{n=2}^{\infty}(-1)^{n} a(p)_{n} $$ is convergent. As we have mentioned, we may rewrite $$ a(p)_{n}=(-1)^{n-1} \frac{p}{n}\left(1-\frac{p}{1}\right)\left(1-\frac{p}{2}\right) \cdots\left(1-\frac{p}{n-1}\right) $$ so that $$ (-1)^{n} a(p)_{n}=-\frac{p}{n}\left(1-\frac{p}{1}\right)\left(1-\frac{p}{2}\right) \cdots\left(1-\frac{p}{n-1}\right) $$ for $n \geq 2$, which has a definite sign (always negative) for $p \in(0,1) .$ Using the elementary inequality (2.4.8) one obtains that $$ \begin{aligned} 0 & \leq-(-1)^{n} a(p)_{n} \\ & \leq \frac{p}{n} \exp \left\{-p \sum_{k=1}^{n-1} \frac{1}{k}\right\} \\ &=\frac{p}{n} \exp \left\{-p \gamma_{n-1}-p \ln (n-1)\right\} \\ &=\frac{p}{n} \frac{1}{(n-1)^{p}} e^{-p \gamma_{n-1}} \end{aligned} $$ where $$ \gamma_{n-1}=\sum_{k=1}^{n-1} \frac{1}{k}-\ln (n-1) \rightarrow \gamma $$ the Euler constant. Hence $e^{-p \gamma_{n-1}} \rightarrow e^{-p \gamma}$ as $n \rightarrow \infty$, and therefore sequence $e^{-p \gamma_{n-1}}$ is bounded by some constant $C$. Therefore $$ 0 \leq-(-1)^{n} a(p)_{n}\lt p C \frac{1}{n(n-1)^{p}} $$ for any $n \geq 2 .$ Since $p>0, \sum \frac{1}{n(n-1)^{p}}$ is convergent, so that, by the comparison test for series, $$ \sum_{n=2}^{\infty}(-1)^{n-1} a(p)_{n} $$ is convergent. Since $$ \left|\frac{p(p-1) \cdots(p-(n-1))}{n !} x^{n}\right| \leq(-1)^{n-1} a(p)_{n}\lt p C \frac{1}{n(n-1)^{p}} $$ for every $x \in[-1,1]$ and for every $n \geq 1$, by M-test for uniform convergence, together with Abel's theorem, for $p>0$, the power series $$ \sum_{n=2}^{\infty} \frac{p(p-1) \cdots(p-(n-1))}{n !} x^{n} $$ converges uniformly to $(1+x)^{p}-1-p x$ on $[-1,1]$, which proves 2$)$. For example $$ \sqrt{1+x}=1+\sum_{n=1}^{\infty} \frac{\frac{1}{2}\left(\frac{1}{2}-1\right) \cdots\left(\frac{1}{2}-(n-1)\right)}{n !} x^{n} \quad \forall x \in[-1,1] $$and the convergence of the Taylor expansion on $[-1,1]$ is uniform, and $$ \frac{1}{\sqrt{1+x}}=1+\sum_{n=1}^{\infty} \frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right) \cdots\left(-\frac{1}{2}-(n-1)\right)}{n !} x^{n} \quad \forall x \in(-1,1] . $$

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2022-3-8 22:16
本帖最后由 hbghlyj 于 2022-3-8 23:38 编辑 搬运一篇文章
首先,我们来研究二项式函数 $f\left( x \right)=\left(1+ x \right)^{\alpha}$ 的麦克劳林级数:
$$1+\alpha x+\frac{\alpha(\alpha-1)}{2 !} x^{2}+\cdots+\frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n !} x^{n}+\cdots \tag1$$
的收敛区间及和函数。

由比式判别法易得 $\left( 1 \right)$ 的收敛半径 $R=1$ ,下面来求和。这里当然可以用证明余项的极限为0的方式得出结论,后文引用的回答中有证明方法。这里提供的方法更利于非数类朋友们理解和运用。

设级数 $\left( 1 \right)$ 的和函数为 $g\left( x \right)$ ,逐项求导得
$$g^{\prime}(x)=\alpha\left[1+\frac{(\alpha-1)}{1} x+\frac{(\alpha-1)(\alpha-2)}{2 !} x^{2}+\cdots+\frac{(\alpha-1) \cdots(\alpha-n+1)}{(n-1) !} x^{n-1}+\cdots\right] . $$
两边同乘 $(1+x)$ ,则 $x^{n}$ 项的系数为

$\begin{aligned} \frac{(\alpha-1) \cdots(\alpha-n+1)}{(n-1) !}+\frac{(\alpha-1) \cdots(\alpha-n)}{n !} &=\frac{(\alpha-1) \cdots(\alpha-n+1)}{(n-1) !}\left(1+\frac{\alpha-n}{n}\right) \\ &=\frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n !} \quad(n=1,2, \cdots) . \end{aligned}$

于是有

$ (1+x) g^{\prime}(x)=\alpha g(x), x \in(-1,1) $

令 $F(x)=\frac{g(x)}{(1+x)^{a}} $ ,则 $F(0)=g(0)=1$ ,

$F^{\prime}(x)=\frac{(1+x)^{a} g^{\prime}(x)-\alpha(1+x)^{n-1} g(x)}{(1+x)^{2 n}}=\frac{(1+x) g^{\prime}(x)-\alpha g(x)}{(1+x)^{2+1}}=0$

从而 $F(x)=F(0)=1, x \in(-1,1)$

即 $g(x)=(1+x)^{n}, x \in(-1,1)$

下面求收敛域,即考虑收敛区间端点的情形,其结果如下:

当$\alpha \leqslant-1$时,收敛域为$(-1,1);$
当$-1<\alpha<0$时,收敛域为$(-1,1];$
当$\alpha>0$且不为整数时,收敛域为$[-1,1].$


推导见

想问下(1+x)^α的幂函数展开式为什么在x=-1处发散?


讨论完二项式级数,很难不联想到超几何级数。很多级数题其实都是超几何级数的特殊情形。下面作个简单介绍。

形如

$F(\alpha, \beta, \gamma, x)=1+\sum_{n=1}^{\infty} \frac{\alpha \cdot(\alpha+1) \cdots(\alpha+n-1) \cdot \beta \cdot(\beta+1) \cdots(\beta+n-1)}{n ! \gamma \cdot(\gamma+1) \cdots(\gamma+n-1)} x^{n} \\$

的幂级数称为超几何级数。其中参数 $\alpha,\beta,\gamma$ 不取 $0$ 和负整数。

暂时假定 $\alpha, \beta, \gamma, x>0$ ,这里 $\frac{a_{n+1}}{a_{n}}=\frac{(\alpha+n)(\beta+n)}{(1+n)(\gamma+n)} x \rightarrow x$

依达朗贝尔判别法立即可以确定当 $x<1$ 时收敛, $x>1$ 时发散.

当 $x=1$ 时有 $\frac{a_{n}}{a_{n+1}}=\frac{(1+n)(\gamma+n)}{(\alpha+n)(\beta+n)}=\frac{\left(1+\frac{1}{n}\right)\left(1+\frac{\gamma}{n}\right)}{\left(1+\frac{\alpha}{n}\right)\left(1+\frac{\beta}{n}\right)}$

利用展开式 $\frac{1}{1+\frac{\alpha}{n}}=1-\frac{\alpha}{n}+\frac{\alpha^{2}}{1+\frac{\alpha}{n}} \cdot \frac{1}{n^{2}}, \frac{1}{1+\frac{\beta}{n}}=1-\frac{\beta}{n}+\frac{\beta^{2}}{1+\frac{\beta}{n}} \cdot \frac{1}{n^{2}} $ 将上述比值表示成如下形状

$\frac{a_{n}}{a_{n+1}}=1+\frac{\gamma-\alpha-\beta+1}{n}+\frac{\theta_{n}}{n^{2}}$ ,其中$\theta_{n}$ 有界

依Gauss判别法,我们看出:当 $\gamma-\alpha-\beta>0$ 时级数收敛, $\gamma-\alpha-\beta \leqslant 0$ 时发散。

往前推一步,现只假定 $\alpha, \beta, \gamma$ 不为 $0$ 及负整数。应用达朗贝尔判别法的新形式, 我们可以确信: 当 $|x|<1$ 时这个级数绝对收敛, 而当 $|x|>1$ 时发散.

现设 $x=1$ ;

因为比值上述比值对于充分大的 $n$ 是正的,所以级数的项从某处开始后将有同样的符号。我们照旧把高斯判别法应用到这些项上,这也说明:

当 $\gamma-\alpha-\beta>0$ 时, 级数收敛 (当然是绝对收敛); 而当 $\gamma-\alpha-\beta \leqslant 0$ 时, 级数发散.

最后,设 $x=-1$ .由刚才所说的事实显然可知, 当 $\gamma-\alpha-\beta>0$ 时给定级数 $F(\alpha, \beta, \gamma,-1)$ 的绝对值级数收敛, 于是给定级数在这情形下绝对收敛.

当 $ \gamma-\alpha-\beta<-1$ 时, 从某处开始将有 $\left|\frac{a_{n}}{a_{n+1}}\right|<1, \text { 即 }\left|a_{n}\right|<\left|a_{n+1}\right|$

显然这时 $a_{n}$ 不趋于 0, 级数发散.

现在来全部解决当 $x=-1$ 时, 在 $-1 \leqslant \gamma-\alpha-\beta \leqslant 0$ 的假定下 (亦即这种情形我们曾 了没有考虑过)超越几何级数

$F(\alpha, \beta, \gamma, x)=1+\sum_{n=1}^{\infty} \frac{\alpha \cdot(\alpha+1) \cdots \cdot(\alpha+n-1) \cdot \beta \cdot(\beta+1) \cdots \cdots(\beta+n-1)}{n ! \gamma \cdot(\gamma+1) \cdots(\gamma+n-1)} x^{n}$

敛散情况的问题

这儿第 $n+1$ 项系数跟第 $n$ 项系数的比值等于

$$\frac{(\alpha+n)(\beta+n)}{(1+n)(\gamma+n)}=1-\frac{\gamma-\alpha-\beta+1}{n}+\frac{\lambda_{n}}{n^{2}} \quad\left(\left|\lambda_{n}\right| \leqslant L\right)\tag2$$

对于充分大的 $n$ 值说来, 这比值是正的; 设 $\gamma-\alpha-\beta>-1$ , 于是比值到后来总是小于 1. 这样,

$$1+\sum_{n=1}^{\infty}(-1)^{n} \frac{\alpha \cdot(\alpha+1) \cdots \cdot(\alpha+n-1) \cdot \beta \cdot(\beta+1) \cdots \cdots(\beta+n-1)}{n ! \gamma \cdot(\gamma+1) \cdots(\gamma+n-1)}\tag3$$

如果在弃去若干个开始项后, 就变成每项的绝对值单调递城的交错级数了。在这里把求通项的 (绝对值的) 极限化成无穷乘积

$$\prod_{n=n_{0}}^{\infty} \frac{(\alpha+n)(\beta+n)}{(1+n)(\gamma+n)}$$

(这里开始值为 $n_0$ 可假定为如此之大使得所有因数都是正的)更为方便. 如果 $\gamma-\alpha-\beta>-1$ , 则从 $(2)$ , 可推知这乘积具有$0$值;级数收敛。

$\gamma-\alpha-\beta=-1$ 的情形时, 公式 (2) 得到下面的形状:

$\frac{(\alpha+n)(\beta+n)}{(1+n)(\gamma+n)}=1+\frac{\lambda_{n}}{n^{2}} \quad\left(\left|\lambda_{n}\right| \leqslant L\right)$

无穷乘积的值异于 0, 对级数 (3) 说来违反了收敛性的必要条件, 级数发散.

至此我们终于完成了对超越几何级数敛散情况的研究.

$Q.E.D$

分析中的一些初等函数,它们的幂级数展开其实就是超越几何级数,除了二项式函数外,还有

\begin{aligned} &\arcsin x=x F\left(\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, x^{2}\right) \\ &\operatorname{arctg} x=x F\left(\frac{1}{2}, 1, \frac{3}{2},-x^{2}\right) \\ &\ln (1+x)=x F(1,1,2,-x) \end{aligned}

等等,它们在收敛区间端点的情形都可以由此得出。



参考文献:


超越几何级数的敛散性再讨论(张鸣)1995-05-15 武当学刊
$type 超越几何级数的敛散性再讨论.pdf (297.61 KB, 下载次数: 37)

菲赫金哥尔茨《微积分学教程》第二卷第一分册p231-233;高等教育出版社

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2022-11-5 05:11
类似的证法见于complex.pdf的24页:
Let $F(z)$ be the multi-function \[
\left[(1+z)^\alpha\right]=\{\exp (\alpha \cdot w): w \in \mathbb{C}, \exp (w)=1+z\}
\]
Using $L(z)$ the principal branch of $[\log (z)]$ we obtain a branch $f(z)$ of $[(1+z)^\alpha]$ given by $f(z)=\exp (\alpha \cdot L(1+z))$. Let $\left(\begin{array}{l}\alpha \\ k\end{array}\right)=\frac{1}{k !} \alpha \cdot(\alpha-1) \ldots(\alpha-k+1)$. We want to show that a version of the binomial theorem holds for this branch of the multifunction $\left[(1+z)^\alpha\right]$.

Let $s(z)=\sum_{k=0}^{\infty}\left(\begin{array}{l}\alpha \\ k\end{array}\right) z^{k}$.
By the ratio test, $s(z)$ has radius of convergence equal to 1, so that $s(z)$ defines a holomorphic function in $B(0,1)$. Moreover, you can check using the properties of power series established in a previous section, that within $B(0,1), s(z)$ satisfies $(1+z) s^{\prime}(z)=\alpha \cdot s(z)$.

Now $f(z)$ is defined on $\mathbb{C} \backslash(-\infty,-1)$, and hence on all of $B(0,1)$. Moreover $f^{\prime}(z)=(\alpha / 1+z) f(z)$. We claim that within the open ball $B(0,1)$ the power series $s(z)=\sum_{n=0}^{\infty}\left(\begin{array}{c}\alpha \\ k\end{array}\right) z^k$ coincides with $f(z)$. Indeed if we set
\[
g(z)=\frac{s(z)}{f(z)}
\]
then $g(z)$ is holomorphic for every $z \in B(0,1)$ and by the chain rule
\[
g^{\prime}(z)=\frac{s^{\prime}(z) f(z)-s(z) f^{\prime}(z)}{f^2(z)}=0
\]
since $s^{\prime}(z)=\frac{\alpha \cdot s(z)}{1+z}$. Also $g(0)=1$ so $g$ is constant and $s(z)=f(z)$.
Here we use the fact that if a holomorphic function $g$ has $g^{\prime}(z)=0$ on $B(0,1)$ then it is constant. We have already proven this for $\mathbb{C}$ and in fact the same proof applies to $B(0,1)$. Indeed, as we saw in the case of $\mathbb{C}$, if $g^{\prime}(z)=0$ for all $z$ then $g$ is constant on any vertical and horizontal segment, which clearly implies that $g$ is constant on $B(0,1)$. We note that this follows also from the following general result that we will prove soon: if a holomorphic function $g$ has $g^{\prime}(z)=0$ for all $z$ in a domain $U$, then $g$ is constant on $U$.

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2025-2-16 17:37

纯代数和初等的证明负或分数幂二项式展开

$type Olinde Rodrigues, Démonstration élémentaire et purement algébrique du dével.pdf (303.68 KB, 下载次数: 0)
奥林德·罗德里格斯
纯数学与应用数学杂志第一系列,第三卷(1838),第550-551页。
numdam.org/item?id=JMPA_1838_1_3__550_0
Démonstration élémentaire et purement algébrique du développement d'un binôme élevé à une puissance négative ou fractionnaire
纯代数和初等的证明负或分数幂二项式展开

作者:Olinde Rodrigues

设 $x, y$ 为两个正整数,在次数为 $p$ 时停止,有
\begin{align}
& (1+a)^x=1+x a+(x, 2) a^2+(x, 3) a^3+\cdots(x, p) a^p, \\
& (1+a)^y=1+y a+(y, 2) a^2+(y, 5) a^3+\cdots(y, p) a^p, \\
& (1+a)^{x+y}=1+(x+y) a+(x+y, 2) a^2+(x+y, 3) a^3 \cdots+\left(x+y, p\right) a^p,
\end{align}
其中 $(x, p)$ 表示 $\frac{x \cdot(x-1)\cdot(x-2)\ldots(x-p+1)}{1\cdot2\cdot 3 \ldots p}$。
因此,$(1+a)^{x+y}$ 的前 $p+1$ 项恒等于两个多项式 (1) 和 (2) 的前 $p+1$ 项的乘积。
因为它们是这两个变量的 $p$ 次整有理函数,根据已知定理,这个恒等式对于所有所有整数 $x$ 和 $y$ 成立。
因此,将多项式 (3) 除以多项式 (1) 或 (2) 中的一个,将严格得到另一个多项式的商,直到 $a$ 的 $p$ 次项为止。设 $x+y=0$,则有
\[
\frac{1}{1+x a+(x, 2) a^2+(x, 3) a^3+\dots+(x, p) a^p}=1-x a+(-x, 2) a^2+\cdots+(-x, p) a^p
\]
并且取 $p$ 无限大,我们将得到我们想要推导除法的
\[
\frac{1}{1+x a+(x, 2) a^2+\dots+a^x}=(1+a)^{-x}=1-x a+(-x, 2) a^2+\dots
\]
这就是 $(1+a)^{-x}$ 展开的规律,由 $1$ 除以整二项式 $(1+a)^x$ 的代数除法得出。

这个规律与正整数幂展开的规律相同。

让我们考虑分数指数的情况:设 $x, y$ 为两个整数,其中一个为正数,我们将得到最高阶为 $a^p$ 的
\begin{equation}
(1+a)^{x y}=\left[1+x a+(x, 2) a^2+(x, 5) a^3 \ldots+(x, p) a^p\right]^y
\end{equation}
根据二项式定理
\begin{equation}
(1+a)^{x y}=1+x y . a+(x y, 2) a^2+(x y, 3) a^3 \ldots+(x y, p) a^p
\end{equation}
多项式 $1+x a+(x, 2) a^2 \ldots+(x, p) a^p$ 的前 $p+1$ 项与多项式 (5) 对所有整数 $x$ 和 $y$ 相同,并且由于上述相同的原因,对于所有可能的 $x$ 和 $y$ 的值相同。

因此设 $x y=z$,$z$ 为整数,则我们将有相同的项,直到阶为 $a^p$,
\[
\sqrt[y]{1+z a+(z, 2) a^2+\ldots(z, p) a^p}=1+\frac{z}{y} a+\left(\frac{z}{y}, 2\right) a^2+\ldots\left(\frac{z}{y}, p\right) a^p
\]
并且由于 $p$ 可以任意大,因此
\[
(1+a)^{\frac{z}{y}}=1+\frac{z}{y} a+\left(\frac{z}{y}, 2\right) a^2+\left(\frac{z}{y}, 3\right) a^3+\dots
\]
因此,二项式 $(1+a)^x$ 展开的算法规律对于所有 $x$ 的值都是相同的,无论这些展开项是由乘法、除法还是开方得出的,也无论其代入数值生成的级数的收敛或发散。

手机版|悠闲数学娱乐论坛(第3版)

GMT+8, 2025-3-4 13:08

Powered by Discuz!

× 快速回复 返回顶部 返回列表