Forgot password?
 Create new account
View 529|Reply 3

[几何] 由双曲线的渐屈线的切线作对称得到的一个曲线

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2022-4-7 10:36:59 |Read mode
Last edited by hbghlyj at 2023-2-23 22:16:00双曲线$x^2-y^2=1$上一点$A$,曲率中心$B$的轨迹是$$-64 + 48 x^2 - 12 x^4 + x^6 - 48 y^2 + 12 x^2 y^2 + x^4 y^2 - 12 y^4 - x^2 y^4 - y^6=0$$作$B$处的切线,$A$关于它的对称点$A'$的轨迹是\begin{gathered}-65536+147456 x^2-123392 x^4+52416 x^6-12545 x^8+1725 x^{10}-128 x^{12}+4 x^{14}-147456 y^2+195584 x^2 y^2\\-72000 x^4 y^2+7276 x^6 y^2+1287 x^8 y^2-336 x^{10} y^2+20 x^{12} y^2-123392 y^4+72000 x^2 y^4-7014 x^4 y^4-438 x^6 y^4\\-192 x^8 y^4+36 x^{10} y^4-52416 y^6+7276 x^2 y^6+438 x^4 y^6+32 x^6 y^6+20 x^8 y^6-12545 y^8-1287 x^2 y^8\\-192 x^4 y^8-20 x^6 y^8-1725 y^{10}-336 x^2 y^{10}-36 x^4 y^{10}-128 y^{12}-20 x^2 y^{12}-4 y^{14}=0\end{gathered} 2.png 2.png
近似地,当$B$处的切线为竖直的时,$A'$的轨迹出现一个尖点(cusp),这时,$A\left(\frac12\sqrt{3\over2},\frac1{\sqrt2}\right),B\left(\frac32\sqrt{3\over2}, \frac1{2\sqrt2}\right),A'\left(2\sqrt{3\over2},\frac1{\sqrt2}\right)$
2.png 2.png

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2022-4-7 11:27:31
Last edited by hbghlyj at 2022-4-7 17:28:00尖点并非当$B$处的切线为竖直时取得, 1#求出的近似坐标是(sqrt(6),1/sqrt(2))≈(2.44948974,0.707106781)

In[1]:=
        F = -65536 + 147456 x^2 - 123392 x^4 + 52416 x^6 - 12545 x^8 +
          1725 x^10 - 128 x^12 + 4 x^14 - 147456 y^2 + 195584 x^2 y^2 -
          72000 x^4 y^2 + 7276 x^6 y^2 + 1287 x^8 y^2 - 336 x^10 y^2 +
          20 x^12 y^2 - 123392 y^4 + 72000 x^2 y^4 - 7014 x^4 y^4 -
          438 x^6 y^4 - 192 x^8 y^4 + 36 x^10 y^4 - 52416 y^6 +
          7276 x^2 y^6 + 438 x^4 y^6 + 32 x^6 y^6 + 20 x^8 y^6 - 12545 y^8 -
          1287 x^2 y^8 - 192 x^4 y^8 - 20 x^6 y^8 - 1725 y^10 -
          336 x^2 y^10 - 36 x^4 y^10 - 128 y^12 - 20 x^2 y^12 - 4 y^14;
In[2]:=
        Solve[{D[F, x] == D[F, y] == F == 0, x > 0, y > 0}, {x, y}]
Out[2]:=
        
2.png
画一下,发现这才是正确的尖点坐标 约为{2.46593, 0.671693}
Screenshot 2022-04-07 043506.png
把尖点放大1000倍看一下:
Screenshot 2022-04-07 052803.png

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2022-4-7 11:54:53
作平移,展开,我们看到,取出曲线的最低次项,形如$(Ax+By)^2$,所以,在尖点附近,有两条重合的切线 Screenshot 2022-04-07 043506.png
使用Solve,我们看到,斜率约为-3.67121
Screenshot 2022-04-07 043506.png
然后可以画一下尖点处的这条切线:
Screenshot 2022-04-07 050916.png
把尖点放大1000倍看一下:
Screenshot 2022-04-07 053151.png

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2022-4-7 12:16:30
作为比较,1#求出的$B$的轨迹(双曲线的渐屈线)在(2,0)处有一个尖点,将它平移到原点,展开得
Screenshot 2022-04-07 051319.png
我们看到,x的最低次项是3次的,y的最低是2次,这是一个ordinary cusp,类似于$y^2=x^3$的尖点.
Geometric Differentiation的第12页
Screenshot 2022-04-07 051437.png

手机版Mobile version|Leisure Math Forum

2025-4-21 14:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list