Forgot password?
 Create new account
View 420|Reply 15

[几何] 一道题

[Copy link]

62

Threads

180

Posts

1289

Credits

Credits
1289

Show all posts

nttz Posted at 2022-5-25 08:23:59 |Read mode
Last edited by hbghlyj at 2025-3-27 20:51:52如图所示:在 $\triangle A B C$ 中,$\angle B A C=90\du$,$P$ 是三角形内一点,$PA=1, PB=2$,$\triangle ABC$ 面积为 3,求 PC 的最小值?

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2022-5-25 18:05:33
建议修改标题,加些题目的关键词,便于日后搜索,题目码字就更好了。

记 `AB=c`, `AC=b`, `PA=m`, `PB=n`, `PC=p`,设 `P` 到 `AB`, `AC` 的距离分别为 `x`, `y`,则有
\[\led
x^2+y^2&=m^2,\\
x^2+(c-y)^2&=n^2,\\
(b-x)^2+y^2&=p^2,
\endled\]
减减得 `m^2-n^2=(2y-c)c`, `m^2-p^2=(2x-b)b`,代回去得到
\[\left( \frac{m^2-p^2}b+b \right)^2+\left( \frac{m^2-n^2}c+c \right)^2=4m^2,\]
代原题数据,即 `m=1`, `n=2`,面积为 `3` 即 `b=6/c`,代入展开可得
\[(p^4-2p^2+37)c^4-72(p^2+4)c^2+1620=0,\]
上式关于 `c^2` 的判别式
\[\Delta=-1296(p^4-42p^2+121)=-1296(p^2-8p+11)(p^2+8p+11),\]
所以必须满足
\[p^2-8p+11\leqslant0 \iff 4-\sqrt5\leqslant p\leqslant4+\sqrt5,\]
最后还得验证取等条件,因为题目限定 `P` 在三角形内,得看取等时是否满足这一点,但是时间关系懒得验了煮饭先……

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1

View Rating Log

62

Threads

180

Posts

1289

Credits

Credits
1289

Show all posts

 Author| nttz Posted at 2022-5-27 12:27:10
kuing 发表于 2022-5-25 18:05
建议修改标题,加些题目的关键词,便于日后搜索,题目码字就更好了。

记 `AB=c`, `AC=b`, `PA=m`, `PB=n`, ...
几何法怎么完成

65

Threads

414

Posts

3556

Credits

Credits
3556

Show all posts

Tesla35 Posted at 2022-5-27 12:51:20
Last edited by hbghlyj at 2025-4-10 16:30:54

作平行四边形$APQB$,设$PC=x,PD=y$.
熟知恒等式$PA^2+PD^2=PB^2+PC^2$,得$y^2-x^2=3$.
在四边形$BPDQ$由托勒密不等式$2x+y\geqslant BD\cdot PQ=6$.

所以$y\geqslant6-2x$

$\sqrt{x^2+3}\geqslant6-2x$

解得$4-\sqrt{5}\leqslant x\leqslant4+\sqrt{5}$.

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1

View Rating Log

15

Threads

948

Posts

110K

Credits

Credits
12412

Show all posts

色k Posted at 2022-5-27 12:54:02 From the mobile phone
Tesla35 发表于 2022-5-27 12:51
作平行四边形$APQB$,设$PC=x,PD=y$.
熟知恒等式$PA^2+PD^2=PB^2+PC^2$,得$y^2-x^2=3$.
在四边形$BPDQ$由 ...
585牛比
这名字我喜欢

62

Threads

180

Posts

1289

Credits

Credits
1289

Show all posts

 Author| nttz Posted at 2022-5-27 14:39:38
Tesla35 发表于 2022-5-27 12:51
作平行四边形$APQB$,设$PC=x,PD=y$.
熟知恒等式$PA^2+PD^2=PB^2+PC^2$,得$y^2-x^2=3$.
在四边形$BPDQ$由 ...

62

Threads

180

Posts

1289

Credits

Credits
1289

Show all posts

 Author| nttz Posted at 2022-5-27 14:40:16
Tesla35 发表于 2022-5-27 12:51
作平行四边形$APQB$,设$PC=x,PD=y$.
熟知恒等式$PA^2+PD^2=PB^2+PC^2$,得$y^2-x^2=3$.
在四边形$BPDQ$由 ...
关键如何想到从面积到做平行的?

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2022-5-27 23:45:06
Tesla35 发表于 2022-5-27 12:51
作平行四边形$APQB$,设$PC=x,PD=y$.
熟知恒等式$PA^2+PD^2=PB^2+PC^2$,得$y^2-x^2=3$.
在四边形$BPDQ$由 ...
怎么感觉以前见过呢~~好久不久层主了
isee=freeMaths@知乎

15

Threads

948

Posts

110K

Credits

Credits
12412

Show all posts

色k Posted at 2022-5-27 23:50:16 From the mobile phone
isee 发表于 2022-5-27 23:45
怎么感觉以前见过呢~~好久不久层主了
好久不见的应该就是新论坛的作用了嘿嘿
这名字我喜欢

62

Threads

180

Posts

1289

Credits

Credits
1289

Show all posts

 Author| nttz Posted at 2022-5-28 07:35:59
Tesla35 发表于 2022-5-27 12:51
作平行四边形$APQB$,设$PC=x,PD=y$.
熟知恒等式$PA^2+PD^2=PB^2+PC^2$,得$y^2-x^2=3$.
在四边形$BPDQ$由 ...
有没有其他解法的?

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2022-5-28 15:17:44
Last edited by 乌贼 at 2022-5-28 17:08:00如图: 212.png
  作$ AD\perp AP $且$ AD=2 $,令$ AB=y,AC=x $。有\[ \cos \angle PAB=\dfrac{y^2-3}{2y}=-\cos \angle CAD=\dfrac{CD^2-x^2-4}{4x} \]即\[ 2xy^2-6x-y\cdot CD^2+y^2x+4y=0 \]代入$ xy=6 $有\[ y\cdot CD^2=16y \]\[ CD=4 \]所以$ C $点的轨迹为以$ D $为圆心,半径为4的圆。\[ 4-\sqrt{5}\leqslant PC\leqslant 4+\sqrt{5} \]

62

Threads

180

Posts

1289

Credits

Credits
1289

Show all posts

 Author| nttz Posted at 2022-5-28 17:38:26
乌贼 发表于 2022-5-28 15:17
如图:
  作$ AD\perp AP $且$ AD=2 $,令$ AB=y,AC=x $。有\[ \cos \angle PAB=\dfrac{y^2-3}{2y}=-\cos \a ...
代入前的方程是$x^2y$, 找定点可以想到,做垂直也可勉强想到,但是这距离怎么搞成2的?

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2022-5-28 19:46:15
Last edited by 乌贼 at 2022-5-28 20:20:00待定出来的 211.png
\[ \cos \angle PAB=\dfrac{y^2-3}{2y}=-\cos \angle CAD=\dfrac{CD^2-x^2-AD^2}{2x\cdot AD} \]整理得\[ xy(AD\cdot y+x)=3AD\cdot [(\dfrac{CD^2-AD^2}{3AD})\cdot y+x] \]依题意令\[ \begin{cases}
xy=3AD=6\riff AD=2\\AD=\dfrac{CD^2-AD^2}{3AD}\riff CD=2AD=4
\end{cases} \]
同理,若$ \triangle ABC $的面积为$ \dfrac{9}{2} $,则$ AD=3,CD=6, 6-\sqrt{5}\leqslant PC\leqslant 6+\sqrt{5} $,也就是说$ AD $的大小由$
\triangle ABC $面积大小而定。

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2022-5-28 23:19:39
或者这样容易理解些,由\[ \cos \angle PAB=\dfrac{y^2-3}{2y}=-\cos \angle CAD=\dfrac{CD^2-x^2-AD^2}{2x\cdot AD} \]整理得\[ y^2(6AD-CD^2+AD^2)=9(AD-2) \]为了满足所以$ y $的取值上述等式都成立,只有令\[ \begin{cases}
AD-2=0\\6AD-CD^2+AD^2=0
\end{cases} \]解得\[ \begin{cases}
AD=2\\CD=4
\end{cases} \]

62

Threads

180

Posts

1289

Credits

Credits
1289

Show all posts

 Author| nttz Posted at 2022-5-29 09:15:29
乌贼 发表于 2022-5-28 19:46
待定出来的
\[ \cos \angle PAB=\dfrac{y^2-3}{2y}=-\cos \angle CAD=\dfrac{CD^2-x^2-AD^2}{2x\cdot AD} \ ...
厉害,但是想到垂直也不容易啊,而且还要在上面,建立代数关系

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2022-5-29 12:26:13
nttz 发表于 2022-5-29 09:15
厉害,但是想到垂直也不容易啊,而且还要在上面,建立代数关系
我是根据$ 2,4 $楼的结果,再依据熟悉的圆内一点到圆上一点的距离推断出圆心与$ P $的距离为$ \sqrt{5} $,圆半径为$ 4 $,然后……

手机版Mobile version|Leisure Math Forum

2025-4-21 14:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list