Forgot password?
 Create new account
View 118|Reply 2

$ℝ[x]≇ℝ^ℕ$

[Copy link]

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2022-5-31 04:55:23 |Read mode
Example 157 Let $V=\mathbb{R}[x]$ denote the vector space of polynomials in $x$ with real coefficients, and let $W$ denote the vector space of real sequences $\left(a_{n}\right)_{n=0}^{\infty}$. Then $V$ and $W$ are both infinite dimensional but are not isomorphic.

Solution. The set $B=\left\{1, x, x^{2}, x^{3}, \ldots\right\}$ is a basis for $V$. That it is linearly independent shows that $V$ is not finite-dimensional. The set of sequences $\left\{\left(\delta_{i n}\right)_{n=0}^∞ \mid i \geqslant 0\right\}$ is linearly independent and so $W$ is also infinite-dimensional. However the set $S=\left\{\left(t^{n}\right)_{n=0}^{\infty} \mid t \in \mathbb{R}\right\}$ is an uncountable linearly independent subset of $W$ and hence $W$ does not have a countable basis. We prove that $S$ is linearly independent below. Suppose that $$ \alpha_{1}\left(t_{1}^{n}\right)_{n=0}^∞+\dots+\alpha_{k}\left(t_{k}^{n}\right)_{n=0}^∞=(0) $$ for real numbers $\alpha_{1}, \ldots, \alpha_{k}, t_{1}, \ldots, t_{k}$ with the $t_{i}$ distinct. Then for all $n \geqslant 0$ we have $$ \alpha_{1} t_{1}^{n}+\cdots+\alpha_{k} t_{k}^{n}=0 . $$ These equations for $0 \leqslant n< k$ can be rewritten as the single matrix equation $$ \left(\begin{array}{ccccc} 1 & 1 & 1 & \cdots & 1 \\ t_{1} & t_{2} & t_{3} & \cdots & t_{k} \\ t_{1}^{2} & t_{2}^{2} & t_{3}^{2} & \cdots & t_{k}^{2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ t_{1}^{k-1} & t_{2}^{k-1} & t_{3}^{k-1} & \cdots & t_{k}^{k} \end{array}\right)\left(\begin{array}{c} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \\ \vdots \\ \alpha_{k} \end{array}\right)=\left(\begin{array}{c} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{array}\right) . $$ As the $t_{i}$ are distinct, then the above $k \times k$ matrix is invertible (Vandermonde matrix). Hence $α_1=\dots=α_k=0$, $S$ is an uncountable linearly independent set. No such set exists in $V$ and hence $W$ is not isomorphic to $V$.

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-5-21 15:05:01
Last edited by Czhang271828 at 2023-5-21 22:30:00标题改作 $\mathbb R[x]\not\simeq \mathbb R[\![x]\!]$ 更好. 文中的自然数序列即形式幂级数环.

一个借用 Laurent 级数的说明方式是 $\mathbb R[\![x]\!][x^{-1}]$ 是域; 而对任意多项式 $f(x)$, $\mathbb R[x][1/f(x)]$ 永远不是域.

手机版Mobile version|Leisure Math Forum

2025-4-20 22:04 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list