Forgot password?
 Register account
View 243|Reply 1

线性映射 $X\mapsto AX-XA$

[Copy link]

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

hbghlyj Posted 2022-10-29 01:39 |Read mode
aops
$A ,B \in \mathbb{C}^{n\times n}$.
线性映射 $ T_A : \mathbb{C}^{n\times n} \rightarrow \mathbb{C}^{n\times n}$ 定义为 $T_A(X)=AX-XA$.
证明
a) 若 $A$ 相似于 $B$ 则 $\dim(\ker T_A)=\dim(\ker T_B)$
b) $\dim\ker(T_A) \in \{2,4\} $ 当 $n=2$
c) $\dim\ker(T_A) \geq n$

a) 和 b) 都有证明了. 又见这里. 请问 c) 怎么证明呢? 谢谢!

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2023-5-21 14:36
Last edited by Czhang271828 2023-5-21 15:08漏网之鱼, 这题居然没回答过. 其实按照这帖中的结论, 若 $T_A$ 的特征值至少有 $n$ 个 $0$. 特别地, 若 $A$ 可对角化, 特征值(包含重数)为 $\{\lambda_i^{n_i}\}_{1\leq i\leq s}$, 则 $\dim\ker T_A=\sum n_i^2$.

这类贴看着也可以整理一下,
forum.php?mod=viewthread&tid=9759&extra=page=12
forum.php?mod=viewthread&tid=9781&extra=page=12
forum.php?mod=viewthread&tid=9017&extra=page=17

Mobile version|Discuz Math Forum

2025-6-5 01:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit