Forgot password?
 Create new account
View 179|Reply 6

Hyperbolic metric geodesically complete

[Copy link]

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

hbghlyj Posted at 2023-10-20 17:02:21 |Read mode
Last edited by hbghlyj at 2024-2-6 09:19:00 \begin{aligned} \Bbb H&=\{(x, y) \mid y>0\} \\ \text{first fundamental form}&=\frac{\mathrm{d} x^2+\mathrm{d} y^2}{y^2} . \end{aligned}在Poincaré半平面模型的度量下的柯西列一定收敛到$\Bbb H$里面的点吗?有可能收敛到$\Bbb H$边界吗,那样就不完备了?

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2024-2-6 13:01:27
任何内点到边界的距离是无穷远. 测地线是可以无限延申的.
无钱佮歹看、无样佮歹生、无汉草佮无文采、无学历佮无能力、无高度无速度无力度共闲无代志。(闽南话)
口号:疼惜生命,远离内卷。

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

 Author| hbghlyj Posted at 2024-2-6 16:59:46
Czhang271828 发表于 2024-2-6 05:01
任何内点到边界的距离是无穷远. 测地线是可以无限延申的.
找到了:Hopf–Rinow theorem是关于黎曼流形的测地完备性的一套等价命题。定理如下:

设M是黎曼流形,则下列命题等价:
  • $ M $的有界闭子集是紧的。
  • $ M $是完备度量空间。
  • $ M $是测地完备:对$ M $中任意点$ p $,指數映射$ \exp _{p} $可定义在整个切空间$ T_{p}M $.

math.stackexchange.com/questions/1578321)不能對$[0,1]$使用該定理,因為Hopf-Rinow applies to connected boundaryless Riemannian manifolds. The closed interval $[0,1]$ can only be given its usual topology as a manifold with boundary.

That is: the closed interval is not geodesically complete, despite being Cauchy complete.

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

 Author| hbghlyj Posted at 2024-2-6 17:02:28
Hyperbolic metric geodesically complete
Consider the upper half plane model of the hyperbolic space ($\mathbb{H}$ with the riemannian metric $g=\frac{dx^2+dy^2}{y^2}$). It is known that $(\mathbb{H},g)$ is geodesically complete, which means that no geodesic can reach the border $\partial \mathbb{H}$ in a finite time.

Why is that?

Because $\mathbb{H}$ has many symmetries doing it for one geodesic is enough. You can use an appropriate Mobius transformation, $g$,  to realize any geodesic $\gamma$ of $\mathbb{H}$ as
$$\gamma(t)=g\cdot ie^{-t}$$Edit: I saw in your question you didn't want to use explicit geodesics, so you could also do something like this (to see why the denominator forces infinite length)

Let $\gamma(t)=x(t)+iy(t)\subset\mathbb{H}$ be a curve with $\gamma(0)=x_0+iy_0\in\mathbb{H}$ and $\gamma(1)\in\partial \mathbb{H}$ (and say $\dot y<0$).

Then $\ell(\gamma)\ge \int_0^1\frac{|\dot y|}{y} dt=-\int_{y_0}^0 \frac{dy}{y}=\log y|_{0}^{y_0}=\infty$.

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2024-2-6 17:04:03
hbghlyj 发表于 2024-2-6 16:59
找到了:Hopf–Rinow theorem是关于黎曼流形的测地完备性的一套等价命题。定理如下:

设M是黎曼流形,则 ...
用得比较多的等价命题: 存在 $p_0$ 使得 $\exp_{p_0}(v)$ 对任意切向量 $v$ 均有定义.

Comment

就是上面列的第3点  Posted at 2025-2-24 00:10

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

 Author| hbghlyj Posted at 2025-2-24 00:06:54
Czhang271828 发表于 2024-2-6 05:01
任何内点到边界的距离是无穷远. 测地线是可以无限延申的.
讲解证明的视频:Hopf–Rinow theorem

其它视频:The Cartan-Hadamard theorem

手机版Mobile version|Leisure Math Forum

2025-4-20 11:58 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list