Forgot password?
 Create new account
View 106|Reply 4

收敛序列是 $\ell^\infty$ 的闭子集

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2023-6-9 17:52:16 |Read mode
lecture_blog page4
Our other example concerned the sequence space $\ell^\infty$. It contains the subset of convergent sequences, and we showed that this subset is also closed.
类似于(连续实值函数空间)$\mathcal C[a,b]$是(有界实值函数空间)$\mathcal B[a,b]$中的闭子集(具有 sup 范数)

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2023-6-9 17:58:08
Convergent sequences are closed subspace of $l^{\infty}$
Example 46 Let $c$ denote the subset of $l^{\infty}$ consisting of all convergent sequences. Then $c$ is a closed subset of $l^{\infty}$.

Solution Say that $\left(x_n^{(k)}\right)$ is a sequence in $c$ which converges to $\left(X_n\right)$ in $l^{\infty}$ as $k \rightarrow \infty$. We aim to show that $\left(X_n\right)$ is in $c$; we will do this by showing $\left(X_n\right)$ is Cauchy and so convergent.
Let $\varepsilon>0$. As $\left(x_n^{(k)}\right) \rightarrow\left(X_n\right)$ in $l^{\infty}$ then
$$
\left\|\left(x_n^{(k)}\right)-\left(X_n\right)\right\|_{\infty}=\sup _n\left|x_n^{(k)}-X_n\right| \rightarrow 0 \text { as } k \rightarrow \infty
$$
So there exists $K$ such that
$$
\left|x_n^{(k)}-X_n\right|<\varepsilon / 3 \text { for } k \geqslant K \text { and all } n
$$
As $\left(x_n^{(K)}\right)$ is convergent then it is Cauchy. So there exists $N$ such that
$$
\left|x_n^{(K)}-x_m^{(K)}\right|<\varepsilon / 3 \quad \text { for } n, m \geqslant N .
$$
Thus for $m, n \geqslant N$ we have
$$
\left|X_m-X_n\right| \leqslant\left|X_m-x_m^{(K)}\right|+\left|x_m^{(K)}-x_n^{(K)}\right|+\left|x_n^{(K)}-X_n\right|<\varepsilon / 3+\varepsilon / 3+\varepsilon / 3=\varepsilon
$$

Comment

这已经证明收敛序列在 $\ell^\infty$ 下的所有 Cauchy 列收敛于自身. 因此不论把收敛序列扔到哪个更大的空间中, 其本身都是完备的.  Posted at 2023-6-10 21:36

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2023-6-10 22:19:31
这已经证明收敛序列在 $\ell^\infty$ 下的所有 Cauchy 列收敛于自身. 因此不论把收敛序列扔到哪个更大的空间中, 其本身都是完备的.

Metric Spaces: Completeness
A closed subset of a complete metric space is itself complete, when considered as a subspace using the same metric, and conversely. Note that this means, for example, that a closed interval in is a complete metric space. Theorem 5.3: Let be a complete metric space, and let be a subset of.

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2023-6-10 22:20:14

希望查看TeX码按钮👁可以查看点评的TeX码

@kuing

手机版Mobile version|Leisure Math Forum

2025-4-20 22:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list