Forgot password?
 Register account
View 356|Reply 4

[几何/拓扑] 完备 黎曼流形

[Copy link]

3152

Threads

7905

Posts

610K

Credits

Credits
64068
QQ

Show all posts

hbghlyj Posted 2023-10-20 17:02 |Read mode
Last edited by hbghlyj 2025-5-20 17:25Hyperbolic metric geodesically complete Consider the upper half plane model of the hyperbolic space ($\mathbb{H}$ with the riemannian metric $g=\frac{dx^2+dy^2}{y^2}$). It is known that $(\mathbb{H},g)$ is geodesically complete, which means that no geodesic can reach the border $\partial \mathbb{H}$ in a finite time. Why is that? Because $\mathbb{H}$ has many symmetries doing it for one geodesic is enough. You can use an appropriate Mobius transformation, $g$, to realize any geodesic $\gamma$ of $\mathbb{H}$ as $$\gamma(t)=g\cdot ie^{-t}$$Edit: I saw in your question you didn't want to use explicit geodesics, so you could also do something like this (to see why the denominator forces infinite length) Let $\gamma(t)=x(t)+iy(t)\subset\mathbb{H}$ be a curve with $\gamma(0)=x_0+iy_0\in\mathbb{H}$ and $\gamma(1)\in\partial \mathbb{H}$ (and say $\dot y<0$). Then $\ell(\gamma)\ge \int_0^1\frac{|\dot y|}{y} dt=-\int_{y_0}^0 \frac{dy}{y}=\log y|_{0}^{y_0}=\infty$.

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2024-2-6 13:01
任何内点到边界的距离是无穷远. 测地线是可以无限延申的.
无钱佮歹看、无样佮歹生、无汉草佮无文采、无学历佮无能力、无高度无速度无力度共闲无代志。(闽南话)
口号:疼惜生命,远离内卷。

3152

Threads

7905

Posts

610K

Credits

Credits
64068
QQ

Show all posts

 Author| hbghlyj Posted 2024-2-6 16:59
Czhang271828 发表于 2024-2-6 05:01
任何内点到边界的距离是无穷远. 测地线是可以无限延申的.
找到了:Hopf–Rinow theorem是关于黎曼流形的测地完备性的一套等价命题。定理如下:

设M是黎曼流形,则下列命题等价:
  • $ M $的有界闭子集是紧的。
  • $ M $是完备度量空间。
  • $ M $是测地完备:对$ M $中任意点$ p $,指數映射$ \exp _{p} $可定义在整个切空间$ T_{p}M $.

math.stackexchange.com/questions/1578321)不能對$[0,1]$使用該定理,因為Hopf-Rinow applies to connected boundaryless Riemannian manifolds. The closed interval $[0,1]$ can only be given its usual topology as a manifold with boundary.

That is: the closed interval is not geodesically complete, despite being Cauchy complete.

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2024-2-6 17:04
hbghlyj 发表于 2024-2-6 16:59
找到了:Hopf–Rinow theorem是关于黎曼流形的测地完备性的一套等价命题。定理如下:

设M是黎曼流形,则 ...
用得比较多的等价命题: 存在 $p_0$ 使得 $\exp_{p_0}(v)$ 对任意切向量 $v$ 均有定义.

3152

Threads

7905

Posts

610K

Credits

Credits
64068
QQ

Show all posts

 Author| hbghlyj Posted 2025-2-24 00:06
Czhang271828 发表于 2024-2-6 05:01
任何内点到边界的距离是无穷远. 测地线是可以无限延申的.
讲解证明的视频:Hopf–Rinow theorem

其它视频:The Cartan-Hadamard theorem

Mobile version|Discuz Math Forum

2025-6-4 17:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit