Forgot password?
 Create new account
View 5256|Reply 5

[几何] 圆内接四边形有Brocard点⇔调和四边形

[Copy link]

3156

Threads

7935

Posts

610K

Credits

Credits
63672
QQ

Show all posts

hbghlyj Posted 2021-6-1 13:52 |Read mode
Last edited by hbghlyj at 2025-5-19 21:16圆内接四边形ABCD和点P使得
∠PAB=∠PBC=∠PCD=∠PDA
求证:AB·CD=BC·AD

3156

Threads

7935

Posts

610K

Credits

Credits
63672
QQ

Show all posts

 Author| hbghlyj Posted 2025-5-18 22:10
Given a cyclic quadrilateral $ABCD$ and a point $P$ such that $\angle PAB = \angle PBC = \angle PCD = \angle PDA = \omega$. Prove that $AB \cdot CD = BC \cdot AD$.
jstor.org/stable/3603502
Let the internal angles of the quadrilateral be $A = \angle DAB$, $B = \angle ABC$, $C = \angle BCD$, $D = \angle CDA$.
The problem states $\angle PAB = \angle PBC = \angle PCD = \angle PDA = \omega$.
Consider the angles:
$\angle PBA = \angle ABC - \angle PBC = B - \omega$ (assuming P is positioned such that $\omega < B$, etc.)
$\angle PCB = C - \omega$
$\angle PDC = D - \omega$
$\angle PAD = A - \omega$

From the sine rule applied to triangles formed by P and vertices (e.g., $\triangle APB, \triangle BPC$, etc.):
\begin{align*}
    \frac{BP}{\sin(\angle PAB)} &= \frac{AP}{\sin(\angle PBA)} \implies \frac{BP}{\sin \omega} = \frac{AP}{\sin(B-\omega)} \\
    \frac{CP}{\sin(\angle PBC)} &= \frac{BP}{\sin(\angle PCB)} \implies \frac{CP}{\sin \omega} = \frac{BP}{\sin(C-\omega)} \\
    \frac{DP}{\sin(\angle PCD)} &= \frac{CP}{\sin(\angle PDC)} \implies \frac{DP}{\sin \omega} = \frac{CP}{\sin(D-\omega)} \\
    \frac{AP}{\sin(\angle PDA)} &= \frac{DP}{\sin(\angle PAD)} \implies \frac{AP}{\sin \omega} = \frac{DP}{\sin(A-\omega)}
\end{align*}
Rearranging these gives:
\begin{align*}
    AP \sin \omega &= BP \sin(B-\omega) \\
    BP \sin \omega &= CP \sin(C-\omega) \\
    CP \sin \omega &= DP \sin(D-\omega) \\
    DP \sin \omega &= AP \sin(A-\omega)
\end{align*}
Multiplying these four equations together:
\[ (AP \cdot BP \cdot CP \cdot DP) (\sin \omega)^4 = (AP \cdot BP \cdot CP \cdot DP) \sin(A-\omega)\sin(B-\omega)\sin(C-\omega)\sin(D-\omega) \]
Dividing by $AP\cdot BP\cdot CP\cdot DP$
\[ (\sin \omega)^4 = \sin(A-\omega)\sin(B-\omega)\sin(C-\omega)\sin(D-\omega) \]
Since $ABCD$ is cyclic, $C = 180^\circ - A$ and $D = 180^\circ - B$.
So, $\sin(C-\omega) = \sin(180^\circ - A - \omega) = \sin(A+\omega)$.
And $\sin(D-\omega) = \sin(180^\circ - B - \omega) = \sin(B+\omega)$.
Substituting these into the equation:
\[ (\sin \omega)^4 = \sin(A-\omega)\sin(B-\omega)\sin(A+\omega)\sin(B+\omega) \]
Using the identity $\sin(x-y)\sin(x+y) = \sin^2 x - \sin^2 y$:
\[ (\sin \omega)^4 = (\sin^2 A - \sin^2 \omega)(\sin^2 B - \sin^2 \omega) \]
Divide by $(\sin\omega)^4 \sin^2 A \sin^2 B$
\[ \frac{1}{\sin^2 A \sin^2 B} = \frac{\sin^2 A - \sin^2 \omega}{\sin^2\omega \sin^2 A} \cdot \frac{\sin^2 B - \sin^2 \omega}{\sin^2\omega \sin^2 B} \]
\[ \csc^2 A \csc^2 B = \left(\frac{1}{\sin^2\omega} - \frac{1}{\sin^2 A}\right) \left(\frac{1}{\sin^2\omega} - \frac{1}{\sin^2 B}\right) \]
\[ \csc^2 A \csc^2 B = (\csc^2\omega - \csc^2 A)(\csc^2\omega - \csc^2 B) \]
which implies
\begin{equation} \label{eq:1}
\csc^2\omega = \csc^2 A + \csc^2 B \quad
\end{equation}
Let $AB=a, BC=b, CD=c, DA=d$.
The angles subtended by the sides at point $P$ are given as:
$\angle APB = 180^\circ - B = D$ (where $B$ is $\angle ABC$, etc.)
$\angle BPC = 180^\circ - C = A$
$\angle CPD = 180^\circ - D = B$
$\angle DPA = 180^\circ - A = C$
Using the sine rule:
In $\triangle PAB$: $\frac{BP}{\sin\omega} = \frac{a}{\sin(\angle APB)} = \frac{a}{\sin D}$. So $BP = \frac{a \sin\omega}{\sin D}$.
In $\triangle PBC$: $\frac{BP}{\sin(C-\omega)} = \frac{b}{\sin(\angle BPC)} = \frac{b}{\sin A}$. So $BP = \frac{b \sin(C-\omega)}{\sin A}$.
Equating the expressions for $BP$:
\[ \frac{a \sin\omega}{\sin D} = \frac{b \sin(C-\omega)}{\sin A} \]
\[ \frac{a}{b} = \frac{\sin(C-\omega)\sin D}{\sin A \sin\omega} \]
Since $ABCD$ is cyclic, $C = 180^\circ - A \implies \sin(C-\omega) = \sin(180^\circ - A - \omega) = \sin(A+\omega)$.
And $D = 180^\circ - B \implies \sin D = \sin B$.
So,
\[ \frac{a}{b} = \frac{\sin(A+\omega)\sin B}{\sin A \sin\omega} = \frac{(\sin A \cos\omega + \cos A \sin\omega)\sin B}{\sin A \sin\omega} = (\cot\omega + \cot A)\sin B \]
Similarly, for $DP$:
In $\triangle PCD$: $\frac{DP}{\sin\omega} = \frac{c}{\sin(\angle CPD)} = \frac{c}{\sin B}$. So $DP = \frac{c \sin\omega}{\sin B}$.
In $\triangle PDA$: $\frac{DP}{\sin(A-\omega)} = \frac{d}{\sin(\angle DPA)} = \frac{d}{\sin C}$. So $DP = \frac{d \sin(A-\omega)}{\sin C}$.
Equating the expressions for $DP$:
\[ \frac{c \sin\omega}{\sin B} = \frac{d \sin(A-\omega)}{\sin C} \]
\[ \frac{c}{d} = \frac{\sin(A-\omega)\sin B}{\sin C \sin\omega} \]
Since $ABCD$ is cyclic, $\sin C = \sin A$.
So,
\[ \frac{c}{d} = \frac{\sin(A-\omega)\sin B}{\sin A \sin\omega} = \frac{(\sin A \cos\omega - \cos A \sin\omega)\sin B}{\sin A \sin\omega} = (\cot\omega - \cot A)\sin B \]
Now, multiply $\frac{a}{b}$ and $\frac{c}{d}$:
\begin{align*} \frac{ac}{bd} &= [(\cot\omega + \cot A)\sin B] \cdot [(\cot\omega - \cot A)\sin B] \\ &= (\cot^2\omega - \cot^2 A)\sin^2 B \end{align*}
Using the identity $\cot^2 x - \cot^2 y = (\csc^2 x - 1) - (\csc^2 y - 1) = \csc^2 x - \csc^2 y$:
\[ \frac{ac}{bd} = (\csc^2\omega - \csc^2 A)\sin^2 B \]
From relation \eqref{eq:1}, $\csc^2\omega = \csc^2 A + \csc^2 B$.
So, $\csc^2\omega - \csc^2 A = \csc^2 B$.
Substituting this into the expression for $\frac{ac}{bd}$:
\[ \frac{ac}{bd} = (\csc^2 B) \sin^2 B = \frac{1}{\sin^2 B} \cdot \sin^2 B = 1 \]
Therefore, $ac = bd$. This means $AB \cdot CD = BC \cdot AD$.

Comment

结论是调和四边形,木想到证明如此麻烦  Posted 2025-5-19 21:12

28

Threads

96

Posts

792

Credits

Credits
792

Show all posts

lxz2336831534 Posted 2025-5-19 20:16 From mobile phone
托勒密是否有用

69

Threads

424

Posts

4227

Credits

Credits
4227

Show all posts

hejoseph Posted 2025-5-20 15:41
Last edited by hejoseph at 2025-5-20 16:09一些量:设 $AB=a$,$BC=b$,$CD=c$,$DA=d$,$ac=bd=s$,四边形 $ABCD$ 的外接圆圆心是 $O$,点 $P$ 关于四边形 $ABCD$ 的等角共轭点是 $Q$,$AC$ 中点 $M$、$BD$ 中点 $N$、点 $O$、点 $P$、点 $Q$ 共圆,这个圆的半径是 $r$,则
\begin{align*}
\angle POQ&=2\omega\\
\cos\omega&=\frac{(a^2+b^2)(a^2b^2+s^2)}{2ab\sqrt{a^4b^4+(a^4+4a^2b^2+b^4)s^2+s^4}}\\
OP=OQ&=\frac{s\sqrt{(a^2+b^2)(a^2b^2+s^2)((a^4+b^4)(a^4b^4+s^4)-4a^4b^4s^2)}}{2ab(a^4b^4+(a^4+4a^2b^2+b^4)s^2+s^4)\sin\omega}\\
PQ&=\frac{s\sqrt{(a^2+b^2)(a^2b^2+s^2)((a^4+b^4)(a^4b^4+s^4)-4a^4b^4s^2)}}{ab(a^4b^4+(a^4+4a^2b^2+b^4)s^2+s^4)}\\
r&=\frac{s}{2\sin\omega}\sqrt{\frac{(a^4+b^4)(a^4b^4+s^4)-4a^4b^4s^2}{(a^2+b^2)(a^2b^2+s^2)(a^4b^4+(a^4+4a^2b^2+b^4)s^2+s^4)}}
\end{align*}
1.png

3156

Threads

7935

Posts

610K

Credits

Credits
63672
QQ

Show all posts

 Author| hbghlyj Posted 2025-5-20 17:12
guanmo1 wrote at 2018-3-27 08:52
现在关于勃罗卡点的研究的一个最新方向是一般多边形存在勃罗卡点的充要条件。
一般多边形存在勃罗卡点的充要条件是

Mobile version|Untroubled Math Forum

2025-5-21 12:50 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit