Forgot password?
 Create new account
View 172|Reply 5

[几何] 开圆环可以写成有限个凸集的并吗

[Copy link]

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2022-12-30 01:09:15 |Read mode
Last edited by hbghlyj at 2023-5-23 19:17:00
$=\{z\in\Bbb C:1<\abs z<2\}$可以写成有限个凸集的并吗?

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2022-12-30 19:12:41
当然不行. 根据定义可知赋范空间中凸集的闭包也是凸集. 如果开圆环 $A$ 为可以被有限个凸集 $\{U_i\}_{1\leq i\leq r}$ 覆盖, 则 $\overline A$ 亦然. 从而存在某个 $U_i$ 包含 $\{z\mid |z|=1\}$ 上至少两个点, 与凸性矛盾.

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2022-12-30 20:03:37
当内圆半径为0时可以写成2个凸集的并:
\begin{array}l
\set{z:0<\abs z<1}=A\cup B\\
A=\set{z:0<\abs z<1\land\Re z<0}\cup(0,i)\\
B=\set{z:0<\abs z<1\land\Re z>0}\cup(0,-i)
\end{array}

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2022-12-30 20:10:05
Czhang271828 发表于 2022-12-30 12:12
根据定义可知赋范空间中凸集的闭包也是凸集.
Is the closure of a convex set again a convex set?
In fact, the result is true in any topological vector space $X$.

Let $C$ be a nonempty convex subset of $X$. For $x,y \in \overline{C}$ and $\lambda \in [0,1]$, we prove that any neighborhood of $z= \lambda x+ (1-\lambda)y$ intersects $C$. So let $W$ be a neighborhood of $0$. Because $(u,v) \mapsto \lambda u+(1-\lambda)v$ is continuous, there exist open subsets $U$ and $V$ such that $\lambda U+(1-\lambda)V \subset W$; $x+U$ (resp. $y+V$) is an open neighborhood of $x$ (resp. of $y$) so there exists $x_1 \in (x+U) \cap C$ (resp. $y_1 \in (y+V) \cap C$). Therefore, $z_1= \lambda x_1+(1-\lambda)y_1 \in C$ because $C$ is convex and $z_1 \in \lambda (x+U)+(1-\lambda)(y+V) \subset z+W$, ie. $(z+W) \cap C \neq \emptyset$.

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2023-5-24 01:10:45
Czhang271828 发表于 2022-12-30 12:12
当然不行. 根据定义可知赋范空间中凸集的闭包也是凸集. 如果开圆环 $A$ 为可以被有限个凸集 $\{U_i\}_{1\le ...
一般来说,不是单连通的开集不能写成有限凸集的并集?

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-5-24 15:00:58
Last edited by Czhang271828 at 2023-5-24 20:09:00
hbghlyj 发表于 2023-5-24 01:10
一般来说,不是单连通的开集不能写成有限凸集的并集?
其实归纳一下就知道充要条件了.

称 $x,y\in V$ 有性质 $P$, 当且仅当存在 $\theta\in (0,1)$ 使得 $\theta x+(1-\theta)y\notin V$. 则 $V$ 无法写作可数凸集的并, 当且仅当 $V$ 中有可数个点使得其两两满足性质 $P$.

手机版Mobile version|Leisure Math Forum

2025-4-20 21:59 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list