Forgot password?
 Register account
View 270|Reply 2

nested closed sets, lim diam≠0, can intersection be singleton?

[Copy link]

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

hbghlyj Posted 2022-12-15 22:30 |Read mode
Last edited by hbghlyj 2022-12-17 13:07$(X,d)$ is a complete metric space. Let $\{F_n\}$ be a sequence of non-empty closed sets with $F_1\supset F_2\supset\cdots$ and $\operatorname{diam}F_n\rightarrow1$, can $\bigcap_{n=1}^{\infty}F_n$ be a singleton?

We have $\operatorname{diam} \bigcap_{n\in\Bbb{N}} F_n \le \operatorname{diam} F_m\to 1$ as $m\to\infty$
But is it possible that $\operatorname{diam} \bigcap_{n\in\Bbb{N}} F_n=0$

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2022-12-17 15:38
Consider $F_n=\prod_{1\leq i\leq n}\{0\}\times \prod_{j\geq n+1}[0,1]$ in $\ell^\infty$.

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2022-12-28 21:41
Czhang271828 发表于 2022-12-17 08:38
Consider $F_n=\prod_{1\leq i\leq n}\{0\}\times \prod_{j\geq n+1}[0,1]$ in $\ell^\infty$.
I see. Thanks. In this example,
For every $n$, $\operatorname{diam}F_n=1$.
$$\bigcap_{n=1}^{\infty}F_n=\left\{\prod_{i\ge1}\{0\}\right\}$$

Mobile version|Discuz Math Forum

2025-6-5 01:02 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit