|
Last edited by hbghlyj 2023-4-25 21:13\begin{gather*}x_1,y_1,z_1,x_2,y_2,z_2\inℝ
\\x_1^2+y_1^2+z_1^2=x_2^2+y_2^2+z_2^2=1
\\\left(x_1^2-y_1^2, x_1 y_1, y_1 z_1, z_1 x_1\right)=\left(x_2^2-y_2^2, x_2 y_2, y_2 z_2, z_2 x_2\right)\end{gather*}
证明 $\left(x_2, y_2, z_2\right)=\pm\left(x_1, y_1, z_1\right)$
尝试:
$(x_1^2 - y_1^2) z_1^2=(x_1 z_1)^2-(y_1 z_1)^2=(x_2 z_2)^2-(y_2 z_2)^2=(x_2^2 - y_2^2) z_2^2$
若$x_1^2-y_1^2=x_2^2-y_2^2≠0$, 则$z_1^2=z_2^2$.
由$x_1^2+y_1^2+\cancel{z_1^2}=x_2^2+y_2^2+\cancel{z_2^2}$与$x_1^2-y_1^2=x_2^2-y_2^2$得$x_1^2=x_2^2,y_1^2=y_2^2$,矛盾.
故$x_1^2-y_1^2=x_2^2-y_2^2=0$.
由$x_1y_1=x_2y_2$得 $(x_1,y_1)=±(x_2,y_2)$, 代入$x_1^2+y_1^2+z_1^2=x_2^2+y_2^2+z_2^2$得$z_1^2=z_2^2$,
代入$x_1z_1=x_2z_2$得$\left(x_2, y_2, z_2\right)=\pm\left(x_1, y_1, z_1\right)$.
 |
|