Forgot password?
 Register account
View 238|Reply 3

[几何] 证明$ℝℙ^2→ℝ^4$单射

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-2-16 17:22 |Read mode
Last edited by hbghlyj 2023-4-25 21:13\begin{gather*}x_1,y_1,z_1,x_2,y_2,z_2\inℝ
\\x_1^2+y_1^2+z_1^2=x_2^2+y_2^2+z_2^2=1
\\\left(x_1^2-y_1^2, x_1 y_1, y_1 z_1, z_1 x_1\right)=\left(x_2^2-y_2^2, x_2 y_2, y_2 z_2, z_2 x_2\right)\end{gather*}
证明 $\left(x_2, y_2, z_2\right)=\pm\left(x_1, y_1, z_1\right)$

尝试:
$(x_1^2 - y_1^2) z_1^2=(x_1 z_1)^2-(y_1 z_1)^2=(x_2 z_2)^2-(y_2 z_2)^2=(x_2^2 - y_2^2) z_2^2$
若$x_1^2-y_1^2=x_2^2-y_2^2≠0$, 则$z_1^2=z_2^2$.
由$x_1^2+y_1^2+\cancel{z_1^2}=x_2^2+y_2^2+\cancel{z_2^2}$与$x_1^2-y_1^2=x_2^2-y_2^2$得$x_1^2=x_2^2,y_1^2=y_2^2$,矛盾.
故$x_1^2-y_1^2=x_2^2-y_2^2=0$.
由$x_1y_1=x_2y_2$得 $(x_1,y_1)=±(x_2,y_2)$, 代入$x_1^2+y_1^2+z_1^2=x_2^2+y_2^2+z_2^2$得$z_1^2=z_2^2$,
代入$x_1z_1=x_2z_2$得$\left(x_2, y_2, z_2\right)=\pm\left(x_1, y_1, z_1\right)$.

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2023-2-16 18:10
已知
\begin{align*}
\sin^2\theta_1\cos2\varphi _1&=\sin^2\theta_2\cos2\varphi _2,\\
\sin^2\theta_1\sin2\varphi_1&=\sin ^2\theta_2\sin2\varphi_2,\\
\sin 2\theta_1\cos\varphi_1&=\sin 2\theta_2\cos\varphi_2,\\
\sin 2\theta_1\sin\varphi_1&=\sin 2\theta_2\sin\varphi_2.\\
\end{align*}
证明,\[
(\sin \theta_1\cos\varphi _1,\sin\theta_1\sin\varphi _1,\cos \theta_1)=\pm (\sin \theta_2\cos\varphi _2,\sin\theta_2\sin\varphi _2,\cos \theta_2).
\]
这是显然的.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-2-16 18:43

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-2-16 21:28
Difference between Cross-Cap, Mobius Band, and Real Projective Plane
The cross-cap is a model in 3 dimenions, with self intersections, of the projective plane.

The projective plane can also be seen as a Mobius band with a disc glued onto the boundary; but this cannot be done in 3D. A representation of this gluing and its relation to rotations in 3D is shown in part of this presentation Out of Line.

Mobile version|Discuz Math Forum

2025-5-31 10:40 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit