Forgot password?
 Create new account
View 87|Reply 3

[几何] 点到直线的"有向距离"

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2024-10-30 17:07:05 |Read mode
本帖对点到直线的"有向距离"提出疑问:

考虑2对1映射 $f: S^1 \times \mathbb{R} \rightarrow \mathcal{L}$,定义为$$f(\theta,x) =\text{直线} L_{\theta,x} = \{t(\cos\theta,\sin\theta)+x(-\sin\theta,\cos\theta): t\in\mathbb{R}\}$$
其中$(\cos\theta,\sin\theta) ∈S^1$,$θ$是倾斜角,$x$是原点到直线的"有向距离"。
$f$是2对1的,因为$f(\theta,x)=f(\pi+\theta,-x)$,这在上式把$t$换成$-t$就能看出。
我的问题是,为什么这个集合是一个Möbius带?非常感谢您的指导。

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2024-10-30 17:07:39

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2024-10-30 17:14:30
又见于Exercise 5. The space of lines in $\Bbb R^2$.
下方有提示:For example, lines which are not vertical can be parametrized by 2 numbers: the angle $θ ∈
(−π/2, π/2)$ which tells you how much the line is tilted, and $r ∈ \Bbb R$ which is the signed distance of the line from the origin $0 ∈ \Bbb R^2$ (using the + sign if the line passes above 0, and the − sign if it passes below 0).

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2024-10-30 17:22:18
那么$\mathbb{R}^3$中的直线组成什么?sword.cit.ie/cgi/viewcontent.cgi?article=1003 … ;context=dpttem_kpre
$\mathbb{R}^n$中的直线呢?

手机版Mobile version|Leisure Math Forum

2025-4-20 22:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list