Forgot password?
 Register account
View 379|Reply 5

[几何] Möbius带上的蚂蚁的状态的空间$S^1\times\mathbb{R}^3$

[Copy link]

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

hbghlyj Posted 2024-10-3 23:45 |Read mode
Last edited by hbghlyj 2024-11-21 12:41Tangent bundle of mobius strip is diffeomorphic to $\mathbb{S}^1 \times \mathbb{R}^3$
Möbius带 $M=\{(\theta,y)|\theta\in[0,\pi],y\in \mathbb{R}\}/(0,y)\sim(\pi,-y).$
042641vg0sfzj0goe7cljl[1].png
考虑 $M$ 上的蚂蚁的状态;
  • 位置$(\theta,y)$
  • 速度$(A,B)$
当$\theta$增加$\pi$,$B,y$都变成负的,就回到原来的状态。
$$TM=\{(\theta,y,A\frac{d}{d\theta},B\frac{d}{dy})|\theta\in[0,\pi],y,A,B\in \mathbb{R}\}/(0,y,A,B)\sim(\pi,-y,A,-B).$$
可以看出,以下映射是连续的,逆映射也是连续的:
\begin{align*}f:TM&\to S^1\times\mathbb{R}\times\mathbb{C}\\(\theta,y,A,B)&\mapsto (\theta,A,e^{i\theta}(y+iB)).\end{align*}
因为$f(\theta+\pi,-y,A,-B)=f(\theta,y,A,B)$.

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

 Author| hbghlyj Posted 2024-10-3 23:52
想象一下蚂蚁穿越 Möbius 环。走了一圈后,蚂蚁回到起点,头朝下。
mobiusescher[1].gif

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

 Author| hbghlyj Posted 2024-10-3 23:59
Last edited by hbghlyj 2024-11-21 12:44$S^1$上蚂蚁的状态:
  • 位置$\in S^1$
  • 速度$\inR$
所以 Tangent bundle of $S^1$ is diffeomorphic to the cylinder $S^1\times\Bbb{R}$
考虑切向量组成的空间(如图): 330px-Tangent_bundle.svg[1].png
要取它们不相交的并集$\coprod_{p\in S^1}T_p$,因此把每个点$p\in S^1$处的$T_p$(一条直线)绕$p$旋转到竖直方向,就组成一个圆柱面(如图):

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

 Author| hbghlyj Posted 2024-10-4 12:08
Last edited by hbghlyj 2024-11-21 12:39类似于Möbius带,可以考虑open annulus(因为Möbius带就是把open annulus剪开一个边缘然后旋转180度所形成的)。
Tangent bundle of open annulus is diffeomorphic to $\mathbb{S}^1 \times \mathbb{R}^3$
Möbius带、open annulus两者的tangent bundle都是$\mathbb{S}^1 \times \mathbb{R}^3$
也就是说,两个空间的tangent bundle diffeomorphic并不能推出这两个空间diffeomorphic

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

 Author| hbghlyj Posted 2024-10-4 12:19
Last edited by hbghlyj 2024-11-21 12:49以上是tangent bundle的理解。如何理解cotangent bundle?

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

 Author| hbghlyj Posted 2024-10-4 12:25
Last edited by hbghlyj 2024-11-21 12:41如何证明?

Mobile version|Discuz Math Forum

2025-6-5 07:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit