Forgot password?
 Register account
View 516|Reply 9

Möbius带的“自然”对称性

[Copy link]

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

hbghlyj Posted 2023-5-10 20:55 |Read mode
Möbius带 $M$ 被切割成 5 个相同的方形。
制作一个 $M$ 的模型,然后用手指滚动它,使方形沿一个方向移动。称此对称性为 $r$。
10步之后,将回到起点,因此 $r^{10}=1$。
请注意 $r$ 不是由 $\mathbb{R}^3$ 的旋转导出的;它是Möbius带本身的运动。用传动带会很好地演示出来。
还有另一种自然对称$s$,将 $M$ 翻过来。
$r$ 和 $s$ 一起生成一个群 $$r^{10}=s^2=1,rs=sr^{-1}$$
Control-V.png
用Mathematica绘制的动画

Giant Möbius strips have been used as conveyor belts that last longer because the entire surface area of the belt gets the same amount of wear... gJLBj.gif
By using the Möbius strips as conveyor belts, the mathematics could be performed mechanically by coupled rotations of the belts. Mobius-strip-as-conveyor-belt-768x662.jpg

上面的$s$是旋转,但$r$不是旋转. 问题: $r$是某个$\mathbb R^3$的连续等距变换导出的吗
上面是切成5个相同的方形, 对称群$D_{10}$. 如果切成3个则对称群是$D_6$吗? 切成4个则对称群是$D_8$吗

Comment

Moebius 带就是 $\rtimes \mathbb Z_2$.  Posted 2023-5-11 16:08

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2023-5-10 21:03
根据Möbius带同胚于R2直线的集合可以划分为5个直线的集合?

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2023-5-10 21:08
Last edited by hbghlyj 2025-3-6 07:36 image.svg
Möbius带是$\mathbb C^2$的子集$$M=\left\{\left(e^{2 i \theta}, \lambda e^{i \theta}\right) \mid-\pi<\theta \leqslant \pi, 0 \leqslant \lambda \leqslant 1\right\}$$
$r,s$可以在$U(2)$中表示吗?

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2023-5-11 06:53
Last edited by hbghlyj 2025-3-6 07:36Asymptote code to make torus
  1. import graph3;
  2. currentprojection=perspective(-1,0,0);
  3. size(115mm,0);
  4. surface s=surface(Circle(c=118.5Y, r=45, normal=X),n=5,angle1=180,c=(0,0,0), axis=Z);
  5. draw(s,lightgreen,render(merge=true));
Copy the Code

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2023-5-12 19:45
Last edited by hbghlyj 2025-3-6 07:37
Moebius 带就是 $\rtimes \mathbb Z_2$.
什么是 $\rtimes \mathbb Z_2$呢左边没有东西

找了一个资料
The universal cover of the Mobius strip is the plane.
The deck transformations acting on it are generated by $(x,y) \mapsto (x+1,-y)$.
The group generated by this transformation is $\Bbb Z$, which is therefore the fundamental group.

Comment

就是 $(-)\rtimes \mathbb Z_2: G\mapsto G\rtimes \mathbb Z_2, C_n\mapsto D_n$ (二面体群, 有地方也写 $D_{2n}$)  Posted 2023-5-13 13:51

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2023-5-17 00:19
我懂了:将群$G$映射到半直积$G\rtimes \mathbb Z_2$
例如$C_n\mapsto D_n$

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2023-5-17 00:23
$r,s$可以在$U(2)$中表示
$r$把$M$上的点$\left(e^{2 i \theta}, \lambda e^{i \theta}\right)$映射到$\left(e^{2 i(\theta+\frac\pi5)}, \lambda e^{i(\theta+\frac\pi5)}\right)$
$$r=\pmatrix{e^{2i\pi\over5}\\&e^{i\pi\over5}}$$
$s$把$M$上的点$\left(e^{2 i \theta}, \lambda e^{i \theta}\right)$映射到$\left(e^{-2 i \theta}, \lambda e^{-i \theta}\right)$
$$s=?$$Finite subgroups of U(2)

Comment

$s$ 不是 $\mathbb C$-线性算子, 而是 $\mathbb R$-线性的. 从而应当在四维实矩阵上表示之.  Posted 2023-5-17 14:44

Mobile version|Discuz Math Forum

2025-6-5 00:59 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit